

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

SOFTWARE SYSTEM ARCHITECTURE MODELING
METHODOLOGY FOR NAVAL GUN WEAPON SYSTEMS

by

Joey Rivera

December 2010

 Dissertation Supervisor: Mikhail Auguston

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the
time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
December 2010

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE: Software System Architecture Modeling
Methodology for Naval Gun Weapon Systems
6. AUTHOR(S) Joey Rivera

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This dissertation describes the development of an architectural modeling methodology that supports the
Navy’s requirement to evaluate potential changes to gun weapon systems in order to identify potential
software safety risks. The modeling methodology includes a tool (“Eagle6”) that is based on the
Monterey Phoenix (MP) modeling methodology, and has the capability to create and verify MP models,
execute formal assertions via pre-defined macro commands, and a visualization tool that generates
graphical representations of model scenarios. The Eagle6 toolset has two scenario generation modes,
Exhaustive Search for model verification within scope, and Random trace generation for statistical
estimates of nonfunctional properties, such as performance. The dissertation demonstrates how the
Eagle6 tool may improve the SSSTRP evaluation process by including a methodology to use formal
assertions to test for software states that are considered unsafe.

15. NUMBER OF
PAGES

195

14. SUBJECT TERMS Open Architecture, Software Requirements, Software Safety, COTS
Safety Analysis, Software System Architecture, Modeling, Environmental Modeling,
Assertion Checking

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

SOFTWARE SYSTEM ARCHITECTURE MODELING METHODOLOGY FOR NAVAL
GUN WEAPON SYSTEMS

Joey Rivera

Major, United States Army Reserve
BGS, Indiana University, 1993
M.A., Webster University, 2004

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2010

Author: __
Joey Rivera

Approved by:

__________________ _______________________
Mikhail Auguston Thomas V. Huynh
Computer Science Systems Engineering
Dissertation Committee Chair Co-Advisor

_____________________ ______________________
Ronald Finkbine Robert Harney
Computer Science Systems Engineering
Indiana University Southeast

_____________________ ______________________
Peter Musial Clifford Whitcomb
Systems Engineering Systems Engineering

Approved by: ___

Peter Denning, Chairman, Department of Computer Science

Approved by: ___

Douglas Moses, Associate Provost for Academic Affairs

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

This dissertation describes the development of an architectural modeling

methodology that supports the Navy’s requirement to evaluate potential changes

to gun weapon systems in order to identify potential software safety risks. The

modeling methodology includes a tool (Eagle6) that is based on the Monterey

Phoenix (MP) modeling methodology, and has the capability to create and verify

MP models, execute formal assertions via pre-defined macro commands, and a

visualization tool that generates graphical representations of model scenarios.

The Eagle6 toolset has two scenario generation modes, Exhaustive Search for

model verification within scope, and Random trace generation for statistical

estimates of nonfunctional properties, such as performance. The dissertation

demonstrates how the Eagle6 tool may improve the SSSTRP evaluation process

by including a methodology to use formal assertions to test for software states

that are considered unsafe.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. PROBLEM OVERVIEW ... 1
B. INTRODUCTION TO THE PROBLEM... 2

1. Problem Statement .. 5
2. SSSTRP Mission .. 6
3. Research Approach... 7

a. Project Planning.. 10
b. System Safety Program.. 15

C. RESEARCH FINDINGS: SSSTRP REPORT ANALYSIS.................. 17
D. LIMITATIONS OF STUDY ... 19

1. Vendor Self-Assessment... 20
2. Research Results Summary ... 21

II. REVIEW OF PREVIOUS WORK .. 23
A. INTRODUCTION.. 23
B. SOFTWARE SAFETY RISKS WHEN EVALUATING A COTS

SOLUTION... 23
C. GUN WEAPON SYSTEM SOFTWARE SAFETY RISK:

SOFTWARE OBSOLESCENCE.. 24
D. VENDOR SELECTION SOFTWARE SAFETY RISKS 26
E. REQUIREMENTS AND COTS CAPABILITY MISMATCHES: A

SOFTWARE SAFETY RISK .. 26
F. SOFTWARE ACQUISITION EVALUATION: PERFORMANCE

AND RELIABILITY... 27
G. SOFTWARE ARCHITECTURE MODELS AND CONSTRAINTS...... 29
H. SOFTWARE ARCHITECTURE FLEXIBILITY: AN ACQUISITION

RISK... 32
I. DEPT OF THE NAVY OPEN ARCHITECTURE ENTERPRISE (OA

ENTERPRISE) PROGRAM.. 34
J. SOFTWARE ACQUISITION CHALLENGES OF A NAVAL GUN

WEAPON SYSTEM.. 37
K. SOFTWARE SAFETY REQUIREMENTS FRAMEWORKS............... 39
L. NASA SOFTWARE SAFETY STANDARD (NASA-STD-8719.13).... 44
M. IEC 61508-3 ... 46
N. SUMMARY... 49

III. SYSTEM ARCHITECTURE MODELING METHODOLOGY FOR NAVAL
GUN WEAPON SYSTEM SOFTWARE.. 51
A. INTRODUCTION.. 51
B. DESCRIPTION OF A NAVAL GUN WEAPON SYSTEM 52
C. IDENTIFICATION OF PROBLEMS FOUND IN THE PRE-

ACQUISITION SOFTWARE SAFETY EVALUATION PROCESS..... 56
1. Domain-Specific Issues Covered in This Research............ 56
2. Domain-specific Issues Not Covered in This Research 56

viii

D. OVERVIEW OF THE MONTEREY PHOENIX METHODOLOGY 57
1. MP Scenario (Event Trace).. 57
2. Unordered Events: R: {A B C} .. 59
3. Ordered Events: R: (A B C) ... 59
4. Multiple Unordered Events: R: {* A *} 59
5. Multiple Ordered Events: R: (* A *)....................................... 60
6. Optional Events: R: [A] ... 61
7. Alternative Events: R: (A | B | C) .. 61
8. Introduction of SHARE ALL Construct and Constraints 62
9. MP Attributes ... 63
10. MP Expansion Scope Construct... 63
11. Example MP Model .. 64
12. Small Scope Hypothesis ... 68
13. Use Case Representation in MP ... 70
14. Use Case MP Model... 71
15. Evaluation of MP.. 73

E. PROTOTYPE NAVAL GUN WEAPON SYSTEM MODEL 74
1. The Purpose of the Naval Gun Weapon System Model...... 74
2. Introduction to the Model.. 75
3. Gun Weapon System Model Properties............................... 75

a. Explanation of Event Attributes................................. 93
4. Testing Architectural Design Via Formal Queries 97

a. Testing Architectural Design Via Formal Queries.... 98
b. Macro Commands... 98

F. IDENTIFYING POTENTIAL SOFTWARE SAFETY HAZARD
STATES ... 101
1. Modeling Demonstration: QUERY GWSMaxWatts............ 102
2. Modeling Demonstration: QUERY

Network_Capacity_Check... 107
3. Model Demonstration: QUERY GCC_OpenFireFail 110
4. Model Demonstration: QUERY Max_Manual_Approvals.. 113
5. Model Demonstration: QUERY GCC_ OpenFireFailed 116

G. USING PROBABILITIES TO REFINE SYSTEM BEHAVIOR IN MP120
H. DEMONSTRATION SUMMARY .. 127
I. PROTOTYPE SSSTRP EVALUATION METHODOLOGY 128
J. SUMMARY... 133
K. LIMITATIONS OF THE PROTOTYPE SSSTRP PROCESS............ 133

IV. EAGLE6–PROTOTYPE SOFTWARE ARCHITECTURE MODELING
SOFTWARE.. 135
A. EAGLE6 PROTOTYPE SOFTWARE ARCHITECTURE 135
B. EAGLE6 PROTOTYPE SOFTWARE DIAGRAM............................. 136
C. MP MODEL OF INTERACTION BETWEEN EAGLE6 AND USER. 138
D. PROTOTYPE COMPILER ARCHITECTURE 141

1. Eagle6 Compiler Design.. 141
2. Eagle6 Lexer and Parser ... 142

E. EAGLE6 PROTOTYPE PARSER AND HELPER............................ 142

ix

F. EAGLE6 PROTOTYPE VIEWER FOR GRAPHICAL AND
TEXTUAL DISPLAY OF SCENARIO... 143
1. Eagle6 Prototype Viewer General Options 143
2. Eagle6 Prototype Viewer Scenario Generation Filter 145

G. LIMITATION OF EAGLE6 TOOL... 148

V. RESEARCH CONCLUSION AND CONTRIBUTIONS 153
A. FUTURE RESEARCH OPPORTUNITIES.. 154

LIST OF REFERENCES.. 157

APPENDIX A – MP MODEL FOR GUN WEAPON SYSTEM MK 34 MOD 1........ 161

APPENDIX B – GUN WEAPON SYSTEM MK 34 MOD 1 ASSERTION
LIBRARY .. 169

APPENDIX C – DEFINITION OF TERMS ... 171

INITIAL DISTRIBUTION LIST ... 173

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF FIGURES

Figure 1: WSESRB Structure (From NAVSEAINST 8020.6D)............................. 4
Figure 2: Dissertation Research Process .. 8
Figure 3: CBD Flexibility Framework (From Wulf, Pipek, & Won, 2008)............ 33
Figure 4: OA Assessment Model Matrix (From Department of the Navy,

2005) .. 35
Figure 5: Software Safety Framework (After Medikonda & Panchumarthy,

2009) .. 44
Figure 6: IEC 61508 Life Cycle Framework (From Bell, 2006) 48
Figure 8: MP Event Trace.. 58
Figure 9: MP Unordered Events: R: {A B C}.. 59
Figure 10: MP Ordered Events: R: (A B C).. 59
Figure 11: MP Multiple Unordered Events: R: {* A *}... 60
Figure 12: MP Multiple Ordered Events: R: (* A *)... 60
Figure 13: MP Optional Events: R:[A].. 61
Figure 14: MP Alternative Events: R: (A | B | C) .. 61
Figure 15: Scenario Generated from MP Schema_Send_Receive_Activity 62
Figure 16: MP Example: GWS_Cycle_Test Results.. 66
Figure 17: Scenario Generated from MP Schema: GWS_Cycle_Test #3 67
Figure 18: Scenario Generated from MP Schema: GWS_Cycle_Test Scenario

#20 ... 68
Figure 19: Jackson's Small Scope Hypothesis (After Jackson, Software

abstractions: logic, language, and analysis, 2006) 69
Figure 20: Gun weapon system Fire Use Case Diagram in UML Notation.......... 70
Figure 21: Example of Use Case Modeling via MP ... 73
Figure 22: Scenario Generated from MP Schema: Gun weapon system Model

R2D_activity ... 76
Figure 23: Scenario Generated from MP Schema: CD_activity Scenario #7....... 78
Figure 24: Scenario Generated from MP Schema: GCC_activity Scenario #13.. 80
Figure 25: Scenario Generated from MP Schema: GMP_activity Scenario #96.. 82
Figure 26: Scenario Generated from MP Schema: CDC_activity Scenario #85 .. 84
Figure 27: Scenario Generated from MP Schema: EOD_activity Scenario #13 .. 86
Figure 28: Scenario Generated from MP Schema: GMCP_activity Scenario

#27 ... 88
Figure 29: Scenario Generated from MP Schema: GM_activity Scenario #29 90
Figure 30: Scenario Generated from MP Schema: R3D_activity Scenario #53... 92
Figure 31: MP Model Scenario Generation Process.. 98
Figure 32: Query Building Process .. 98
Figure 33: QUERY GWSMaxWatts - Scenario Query 103
Figure 34: QUERY GWSMaxWatts - Results .. 103
Figure 35: Scenario Generated from QUERY GWSMaxWatts - Graphical

Display.. 105
Figure 36: Scenario Generated from QUERY GWSMaxWatts - Zoom Slice

View.. 106

xii

Figure 37: QUERY Network_Capacity_Check - Scenario Query....................... 108
Figure 38: QUERY Network_Capacity_Check - Results 108
Figure 39: Scenario Generated from QUERY Network_Capacity_Check -

Graphical Display ... 109
Figure 40: QUERY GCC_OpenFireFail - Scenario Query 111
Figure 41: QUERY GCC_OpenFireFail - Results .. 111
Figure 42: Scenario Generated from QUERY GCC_OpenFireFail - Graphical

Display.. 112
Figure 43: QUERY Max_Manual_Approvals - Scenario Query 113
Figure 44: QUERY Max_Manual_Approvals - Results 114
Figure 45: Scenario Generated from QUERY Max_Manual_Approvals -

Graphical Display ... 115
Figure 46: GCC_ OpenFire Total Processing Time - Scenario Query 117
Figure 47: GCC_OpenFire Total Processing - Results...................................... 118
Figure 48: GCC_OpenFire Total Processing - Graphical Display...................... 119
Figure 49: Exhaustive Scenario Generation Options... 122
Figure 50: Radar_Target_Identified Filter .. 123
Figure 51: Model Results Showing Probability .. 124
Figure 52: Model Results Showing Probability .. 124
Figure 53: Random Scenario Generation Options... 126
Figure 54: Model Results Showing Probability for 1000 Generated Scenarios . 127
Figure 55: Proposed SSSTRP Evaluation Methodology.................................... 132
Figure 56: Eagle6 Prototype Software Architecture... 136
Figure 57: Eagle6 User Experience Model .. 137
Figure 58: Eagle6 MP Architecture Scenario... 140
Figure 59: Prototype MP Editor ... 142
Figure 60: Eagle6 Prototype Parser Error Handling .. 143
Figure 61: Eagle6 Prototype Viewer Scenario Generator.................................. 144
Figure 62: Eagle6 Prototype Viewer Scenario Generator Filter 145
Figure 63: Eagle6 Prototype View Scenario Generator Result 147
Figure 64: Eagle6 Prototype Viewer Filter Functionality 148

xiii

LIST OF TABLES

Table 1: Ungrouped SSSTRP Failure Results.. 18
Table 2: Grouped Error Reports in SSSTRP Failure Reports........................... 18
Table 3: OAAM Development Levels (From Department of the Navy, 2005) ... 36
Table 4: Known Software Safety Standards (Bhansali, 2005) 40
Table 5: Required Elements for a Generic Software Safety Requirements

Framework (From Bhansali, 2005) ... 42
Table 6: Gun Weapon System Model Events and Attributes............................ 95

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

LIST OF ACRONYMS AND ABBREVIATIONS

ACAT Acquisition Category

CA Code Analysis

CE/D Concept Exploration and Definition

CINCLANTFLT Commander in Chief Atlantic Fleet

CINCPACFLT Commander in Chief Pacific Fleet

CMC Commandant Marine Corps

CNO Chief of Naval Operations

COMNAVAIRSYSCOM Commander, Naval Air Systems Command

COMNAVORDCEN Commander, Naval Ordnance Center

COMMARCORSYSCOM Commander, Marine Corps Systems Command

COMOPTEVFOR Commander, Operational Test Evaluation Force

ConOps Concept of Operations

DDA Detailed Design Analysis

DON Department of the Navy

DRPM Direct Reporting Program Manager

ECP Engineering Change Proposal

ESD Electrostatic Discharge

EMD Engineering and Manufacturing Development

EOD Explosive Ordnance Disposal

FOC Full Operational Capability

FHA Functional Hazard Analysis

FMECA Failure Modes, Effects and Criticality

 Analysis

FTA Fault Tree Analysis

GWS Gun Weapon System

HAR Hazard Action Report

HERO Hazards of Electromagnetic Radiation to

 Ordnance

IOC Initial Operational Capability

xvi

IPS Integrated Program Summary

LRIP Low Rate Initial Production

MARFORLANT Marine Forces Atlantic

MARFORPAC Marine Forces Pacific

MDA Milestones Decision Authority

MP Monterey Phoenix

MPS Maritime Prepositioning Ship

NAVSURFWARCENDIV Naval Surface Warfare Center Division

NDI Non-Development Item

OPEVAL Operational Evaluation

ORDALTS Ordnance Alterations

O&SHA Operating and Support Hazard Analysis

PDA Preliminary Design Analysis

PEO Program Executive Officer

PHA Preliminary Hazard Analysis

PHL Preliminary Hazard List

PHST Packaging, Handling, Storage and

 Transportation

PIP Product Improvement Program

PM Program Manager

POP Performance Oriented Packaging

SAR Safety Assessment Report

SHA & SSHA System and Sub-System Hazard Analyses

SHIPALTS Ship Alterations

SOF Special Operations Forces

SRA Software Requirements Analysis

SSSTRP Software System Safety Technical Review

 Panel

SSWG System Safety Working Group

STRA Software Test Results Analysis

TECHEVAL Technical Evaluation

xvii

TDP Technical Data Package

TEMP Test and Evaluation Master Plan

TRP Technical Review Panel

USSOCOM United States Special Operations Command

VERTREP Vertical Replenishment

WSESRB Weapon System Explosives Safety Review

 Board

xviii

EXECUTIVE SUMMARY

The U.S. Navy uses the Weapons System Explosive Safety Review Board

(WSESRB pronounced “we-serb”) to evaluate potential changes to weaponry

systems on naval ships. The WSESRB has a Software System Safety Review

Panel (SSSTRP—pronounced “sis-trip”) subcommittee that focuses on the

software safety aspects of weapon system changes. The SSSTRP process

evaluates potential software systems during the pre-acquisition process, and

reports the findings to the WSESRB. The SSSTRP community is experiencing a

high vendor failure rate that results in delays to the acquisition process, and

delays to equipment upgrades that lead to an improved war fighting capability.

This dissertation is the result of researching three years of SSSTRP reports, and

determining the causes of vendors failing the SSSTRP process. It also includes

recommendations for improved SSSTRP processes, and tools that accompany

the process improvements.

The SSSTRP process improvements within this dissertation center around

a modeling and simulation tool named “Eagle6.” Eagle6 is a web-based

application that provides the SSSTRP community the ability to test the effects of

potential weapon system architectural changes on the existing legacy system.

Eagle6 uses formal methods to create macro queries that enable the

nontechnical user to test both functional and nonfunctional system and software

requirements, while generating reports that are understandable by both technical

and nontechnical SSSTRP members. The tool is publically available on the web

at www.Eagle6.com, and includes tutorials and sample models.

xix

ACKNOWLEDGMENTS

There are many people who have contributed to this research effort, both

directly and indirectly. First and foremost, I would like to thank my wife, Beth, for

being so supportive during this endeavor. I also thank my advisor, Dr. Auguston,

for his commitment to "teach" during my research, for his sound professional and

personal advice, and for being such an advocate for my research during my

tenure at NPS. You are, without a doubt, the best teacher I have ever known.

Thanks to Dr. Huynh for his structure, guidance, and patience over the last year.

Thanks to Alex and Michael Gociu for their help on the Eagle6 application

programming. Thanks to Paul Dailey for his encouragement and assistance in

studying for exams. Finally, thanks to all my friends and family who encouraged

me when I needed it most.

xx

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

The objective of the research was to identify the problems associated with

the high number of software safety failures associated with the Navy’s software

system acquisition process. Software Safety is defined as “The software has

unintended (and unsafe) behavior beyond what is specified in the requirements”

(Leveson, 1995). This dissertation includes research on three years of

unclassified software system safety evaluation reports and an analysis of the

findings (Chapter II). A prototype modeling methodology, and the ability to apply

the modeling methodology to the software safety domain, is demonstrated in

Chapter III. The contributions of this research are as follows:

 A prototype methodology and tools to support software system

safety analysis for the Navy’s software system acquisition process

 Higher fidelity of software system safety evaluation using tools that

support assertion checking

 Two methods for architecture testing using exhaustive search for

model verification, and random scenario generation for statistical

estimates of nonfunctional requirements, such as performance

 Extension of Monterey Phoenix Modeling Methodology to include a

framework that uses predefines macro queries to execute

aggregate operations over events

 A. PROBLEM OVERVIEW

Chapter I contains information describing the Navy’s Weapon System

Explosive Safety Review Board certification process for Software Systems.

Specifically, this chapter describes the SSSTRP evaluation process, and the

impact to naval operations of the vendor failing the SSSTRP evaluation process.

The purpose of this chapter is to describe the process and results related to

determining the causal factors for vendors failing the SSSTRP evaluation

2

process. The results of this research demonstrate that the SSSTRP evaluation

process lacks sufficient software safety evaluation methodology and tools.

 B. INTRODUCTION TO THE PROBLEM

The United States Navy formed the Weapon System Explosives Safety

Review Board (WSESRB) in 1968 as a result of a fire on the USS Forrestal (CV-

59) (U.S. Navy, 2007). The subsequent investigation recommended the

establishment of an independent review process (Naval Sea Systems Command,

1997). The report highlighted the need to ensure that safety requirements for

explosives were met for all munitions introduced to the Fleet.

The WSESRB's responsibility is to review the overall safety aspects of

each weapon system, explosive system, and related system to ensure that

weapon system safety requirements are in compliance. After assessing the

degree of compliance with existing criteria, the WSESRB provides a

recommendation to the program manager, program sponsor, Chief of Naval

Operations (CNO), and the Milestone Decision Authority (MDA) on the adequacy

of the safety program and on whether the proposed weapon system should

advance to the next stage in the acquisition cycle. At the discretion of the

WSESRB Chairperson, special WSESRB Technical Review Panels (TRPs) may

review specific safety aspects requiring special expertise (e.g., ordnance-related

software safety) in weapon systems. An appointed TRP Chairperson leads the

TRP team that has at least two other members. Naval Systems Commanders,

upon request from the WSESRB Chairperson, may identify a member to serve

on TRPs. These members are subject-matter experts and have expertise in the

applicable area of the TRP. Other members and technical advisors, chosen for

their expertise, are appointed at the discretion of the TRP Chairperson.

Recommendations made by TRPs are presented to the Program Office

and the WSESRB at the conclusion of the TRP meeting; however, the TRP

recommendations do not become official until the WSERSRB reviews and

endorses the results. The WSESRB may accept, modify, or reject the

3

recommendations of the TRP. The results of the WSESRB action on the TRP

recommendations are provided to the Program Office.

Dahlgren Division, Naval Surface Warfare Center

(NAVSURFWARCENDIV Dahlgren), Dahlgren, Virginia, acts as a principal

activity for system safety support to the WSESRB, as well as chairing the

ordnance-related Software Systems Safety Technical Review Panel (SSSTRP)

and other TRPs as assigned. The evaluation process contains: (1) developing

and recommending, with WSESRB approval, TRP review criteria, and project

data; (2) coordinating meetings of the SSSTRP with members and program

offices; (3) assisting the program office in tailoring TRP review criteria for the

type of program and the current program phase; (4) identifying qualified technical

advisors to participate in the TRP, and, with the WSESRB chairperson’s

concurrence, arranging for their participation; (5) scheduling meetings of the TRP

at the request of the WSESRB chairperson; and (6) providing a summary report

of the TRP findings and recommendations of the SSSTRP TRP to the full

WSESRB.

4

Figure 1: WSESRB Structure (From NAVSEAINST 8020.6D)

Figure 1 represents the WSESRB certification process (Naval Sea

Systems Command, 1997). The WSESRB’s responsibility is to review safety

aspects of each weapon system in order to ensure the Navy's safety

requirements are met. The software engineering processes are not directly

addressed within this certification process; instead, software engineering

processes are handled through the SSSTRP, a subcommittee that addresses

software development processes and outputs in order to ensure software safety.

The software vendor responds to the SSSTRP’s Request for Proposal (RFP) with

a predefined Technical Data Package (TDP). The TDP requirements structure

lacks a standardized method of evaluation (Rivera & Luqi, 2010).

5

1. Problem Statement

A gunship system has both hardware and software components.

Unacceptable unintended behavior of the software system may result from

defective architectural changes made to the hardware and/or software

components of the gunship system. The defective architectural changes can

result from an incorrect implementation of well-designed software system

architectural plans and/or the correct implementation of a software system

architectural design that does not meet the gun weapon system requirements.

The Navy’s Software System Safety Technical Review Panel (SSSTRP), a

committee of domain experts, is responsible for evaluating the gun weapon

system architectural designs, but its evaluation methodology does not contain

adequate structure for evaluating potential gunship architectural changes and/or

the software tools necessary to test the proposed gun weapon system

architectural changes. Consequently, the SSTRP committee would unwittingly

approve of defective software system architectural changes that can result in

unacceptable unintended software behavior, which, in turn, can lead to potential

software safety risks. These potential software safety issues, if unidentified

during the SSSTRP evaluation process, can eventually derail the gunship system

acquisition. To identify potential software safety issues that may bring such

demise to the gunship system acquisition, it is necessary to achieve these two

goals: (1) Identify areas within the SSSTRP evaluation process that need

improved and (2) predict the unintended behavior of the gunship software. A

research effort is thus needed to enable attainment of the two goals. It consists

of an investigation of the SSSTRP evaluation process and the development of a

software tool that has the ability to model potential gunship software system

architectural change. The investigation of the process will result in

recommendations for improving the SSSTRP evaluation process. The software

tool will aid the SSSTRP personnel in the evaluation of potential software system

changes.

6

1. SSSTRP Mission

The SSSTRP's primary focus is to investigate the vendor's software

engineering processes, and to identify any risks associated with the

implementation of the product. Vendors submit Technical Data Packages

(TDPs) that contain supporting documentation from the vendor’s software

engineering quality assurance program. The vendor's responsibility during the

SSSTRP presentation is to explain the known risks of its product, and the risk

mitigation strategies for each known risk.

The design of the SSSTRP review process entails assignments of both

functional and subject matter experts (FME/SME) as members of a technical

review board. The TDP is comprised of software development life cycle

documentation that was generated during the vendor's product development

process.

Our research shows that the current SSSTRP process has a failure rate of

over 80% (Rivera & Luqi, 2010), resulting in (1) the government program office

placing the project on hold until the vendor responds to the failures; or (2) the

government acquisition community having to find an alternative vendor solution

that has the functional and technical capability to pass the SSSTRP process.

A vendor’s failure in the SSSTRP process may impact both the end-user

and the acquisition community in the following ways:

 Project timelines are at risk, thereby resulting in higher failure rates

for related project milestones.

 The end-user ability to leverage the new product

functionality/capability is delayed.

 The end-user may be forced to use a product that has lesser

functionality overlap, or multiple products to meet the total

functional requirement.

 Acquisition processing costs may be higher, with lower customer

satisfaction.

7

The unacceptable risks associated with the high level of SSSTRP failures

are due to a SSSTRP evaluation process that has no clear definition of software

analysis, and no identification of a standardized evaluation process. The

purpose of this research is to explore the problems of the naval gun weapon

system SSSTRP evaluation process, and propose a methodology for identifying

software safety risks. Specifically, our research investigates how to reduce the

impact of the vendor failing the SSSTRP process, and how to standardize the

software safety quality assurance requirements using a formal method of

evaluating potential software.

2. Research Approach

The primary goal of this research project is to identify SSSTRP evaluation

process improvements, and provide a methodology and tools that support a

software safety assessment with higher fidelity. Figure 2 represents the

approach used for this research:

8

Research Process

Research Process

Define requirements and constraints for
a proposed solution. The solution
should include a combination of tools
and methodology.

Test prototype solution with a SSSTRP
case study

Report the results of the case study.

Results/Artifacts

Chapter 1: Introduction to the Problem
Artifacts: Analysis of SSSTRP failures

Problem Statement: ““In order to
alleviate unintended software behavior
of navy gun weapon systems that may
result in software safety issues, we
need a tool that has the capability to
model the interaction between the
system and its environment.”

Chapter 2: Review of previous work

Chapter 3: System Architecture
Modeling Methodology for Naval Gun
Weapons System Software.
Prototype revised SSSTRP process
that incorporates the new methodology
and tools into the SSSTRP evaluation
process.

Chapter 4 – Modeling Tool Description

Chapter 3 – Demonstration of
Assertion Checking and Use Case
modeling using modeling tool.

Dissertation Draft & Defense

Analyze SSSTRP Evaluation
Methodology

Problem: SSSTRP has an
unacceptable high number of failures
resulting in delays within the acquisition
process.

Review previous work to determine
applicable solutions for the problem

Review history of SSSTRP findings
determine if failures are related to a
specific software engineering domain.

Architect/Design/Develop prototype
solution

Figure 2: Dissertation Research Process

9

The research plan includes the following areas of focus:

 Analyze SSSTRP Reports – The purpose of the analysis phase is

to identify the primary reasons for SSSTRP failures within a data

set that contains 2007-2009 unclassified U.S. Navy SSSTRP

reports.

 SSSTRP Structure – The research plan includes a requirement to

analyze SSSTRP personnel structure, and the impact of the

SSSTRP personnel structure relative to vendor failure rates.

 Identify Modeling Methodologies – Recommendations for

improvements to the SSSTRP process may require an integration

of a modeling methodology that supports a streamlined acquisition

process, and ensures a high-level of fidelity relative to software

safety evaluation techniques.

The research goals are used as a means of determining the course of the

research. The goals have also been established based on the literature review,

which identifies potential gaps in the current Navy software acquisition process.

The research for this dissertation required us to submit a request to the

U.S. Navy to view the previous three years of naval gun weapon system

SSSTRP findings (2007–2009). The Navy Program Office PEO IWS 3C, Naval

Gunnery Project Office approved our request to release SSSTRP results that

were not classified as sensitive, and provided a subset of three years of SSSTRP

findings. The SSSTRP findings contain opinions, reports, and recommendations

to the WSESRB. Issues identified in the SSSTRP are documented in the final

report (Rivera & Luqi, Requirements Framework for the Software System Safety

Technical Review Panel Technical Review Package, 2010).

The SSSTRP reports were analyzed in order to determine potential

commonalities for vendor failures. The SSSTRP failures were categorized using

SSSTRP failure category definitions that were obtained from the WESESRB

directive NAVSEAINST 8020.6D (Naval Sea Systems Command, 1997):

10

a. Project Planning

The Software Development Project Plan defines the dates,

milestones, and deliverables that drive the project’s milestone and timeline

definitions. The following documents are software engineering project

management deliverables that fall within the “Project Planning” category:

Project Charter – The Project Charter describes the agreement

between the organization providing the product or service, and the client

organization requesting and receiving the project deliverable. It is a tool to obtain

commitment from all affected groups and individuals within a specific project. It is

an agreement between the technical and business groups which define:

 Partners and external stakeholders

 The project management framework

 Roles, responsibilities, accountabilities, and activities of the

team members

 Management commitments

 The authorized project accountability framework

Project Management Plan (PMP) – The PMP is the controlling

document to manage an Information Management/Information Technology

(IM/IT) project. Upon approval, the PMP provides a baseline to monitor progress

and measure results. The PMP contains the following structure:

 Purpose, scope, and interim and final deliverables of the

project

 Schedule and budget for the project

 Project assumptions and constraints

 Managerial and technical processes necessary to develop

the project deliverables

11

 Resource requirements

 Additional project plan requirements

Scope Statement – The Scope Statement is a summary-level

description of a project that includes project justification, project purpose and

scope, and high-level work plan and deliverables, in addition to product/service

description.

Quality Management Plan(QMP) – The QMP describes the

requirement to ensure the products/deliverables are correct (i.e., function

correctly, satisfy specifications) and to ensure that the project's project

management and development processes are applied properly so as to ensure

the quality of the products.

The Quality Management Plan identifies the standards, practices,

and methods to be used in the project for performing quality assurance activities.

It also explains the verification process for deliverables, the tracking and

reporting of items that do not conform to the QMP, the process to approve

deliverables, and the process for Technical Reviews and Verification and

Validation Audits.

Test Plan – The Test Plan is used to organize, schedule, and

manage the testing effort. The test plan defines the types of testing (e.g.

functional, performance, usability) and the test levels (e.g., unit, integration, field

testing) within the planning and implementation phases of the project.

The Test Plan identifies test items, testing tasks and

responsibilities, the testing environment, testing resource requirements, and the

schedule of the testing activities. It also lists the individual tests, and the

objective, procedures, and expected results of each test.

Risk Management Plan – The Risk Management Plan describes

the management of project risk, and is a subset or companion element of the

Project Management Plan. It identifies the involvement of the project team, the

supplier, and the client in executing risk management activities, the detail and

12

scheduling of each major risk management activity (e.g., identification, analysis,

prioritization, monitoring), risks threshold criteria, and reporting formats.

Performance Plan – The Performance Plan specifies the project

parameters (e.g., cost, schedule, risks) and the product/service attributes (size,

complexity, sites) that will be used to analyze and report the current status of the

project, and to forecast future progress and status. It is a subset or companion

piece to the Project Management Plan.

The Performance Plan outlines what raw data will be collected, the

performance requirements analysis plan, the performance testing tools, and

types and frequency of performance reports.

HR (Staffing and Training) Management Plan – The HR

Management Plan defines the rotation schedule for project resources, and the

evaluation of performance. In addition, it identifies the training requirements to

ensure the project team posses the requisite knowledge and skill set.

Configuration Management Plan (CMP) – The CMP describes

the set of activities and tools to ensure that the project has adequate control over

all items necessary for creating or supporting the project deliverables. The CMP

defines the project deliverables in which it has control, and the mechanism for

controlling changes to those items. It also describes how baselines are produced,

the configuration reporting requirements, and the audits or reviews of the

configuration management process.

Procurement Management Plan – The Procurement Management

Plan documents the management process of identifying how project needs may

best be met by procuring products and/or services, such as:

 Hardware (e.g., development and/or installation hardware)

 Software (e.g., COTS, outsourcing some or all of the

development)

 Services (e.g., management or development

contractors/consultants)

13

The Procurement Management Plan identifies procurement

strategies, outlines the scope of products and/or services to be procured, and

identifies responsibilities for the procurement process up to and including

contract closeout.

Requirements Management Plan (RMP) – The RMP describes

the management of the project’s requirements for products and services during

the project life cycle. It describes the steps to develop an understanding of the

provider’s requirements with specific focus on requirements definition and

measurements. The RMP also identifies and controls changes to requirements

as they evolve during the project to ensure traceability.

Software Development Plan (SDP) – The SDP details the

activities and deliverables during the Software Development Life Cycle of a

project. The SDP defines the software development methodology, the design,

programming and documentation standards, the establishment, control, and

maintenance of the development environment, and any other applicable software

development activities.

Information Management Plan – The Information Management

Plan details the communication and integration activities required to successfully

incorporate the new functionality in the enterprise, to include ensuring the new

product is in accordance with existing legislation, regulations, and policies.

The Information Management Plan describes the identification of

client information needs, and the information standards. In addition, the

Information Management Plan describes how access to information, privacy,

confidentiality, security, intellectual property provisions, retention requirements,

and other life cycle management of information considerations are taken into

account within the project life cycle.

Requirements Specification – The Requirements Specification

defines the boundaries for the project and explicitly specifies system/product

requirements and features. The Requirements Specification stipulates functional,

performance, information, capability, safety, security, ergonomics, operations,

14

maintenance, interface, qualification requirements, and the definition of

acceptance criteria. The Requirements Specifications provides a documented

reference of the project team's understanding of the product/system

requirements, and the deliverables required to provide the product/system.

Risk Log - The Risk log is a listing by ranking of the project risks

and related risk information. The Risk Log provides a statement of each risk, its

ranking, the probability of occurrence and impact if the risk occurs, the planned

response, the person responsible for mitigation actions, and the current status

and actions.

Change Requests - Changes occur during the project life cycle

due to the addition or change to the requirements of the project's products or

services, to an increase or decrease in the complexity of project activities, to an

under or over cost or time estimate, or due to changes in the project assumptions

or dependencies. A Change Request identifies the need to expand or contract

the project scope, modify costs or adjust schedule estimates. It describes in a

concise manner the reason, scope, and impact of a change, and records the

approval to proceed with the change.

Closure Plan - A Closure Plan summarizes the results of a project

and the activities required for the transition of the project's products and services

from "development" to "production" state. The Closure Report identifies the

extent to which the project objectives were satisfied and the anticipated benefits

realized, the person or group within the client's organization who will oversee the

transition to the "production" state, the lessons learned during the project, the list

of project files, and the support arrangements and warranty period, rules and

conditions.

Project Acceptance Plan – The Project Acceptance Plan

formalizes client acceptance of all the deliverables of a project (or a phase) and

also confirms that there are no outstanding deliverables.

Deployment and Maintenance Plan – The Deployment and

Maintenance Plan is a high-level design of the approach to system maintenance.

15

This concept sets the overall parameters for change management during the

maintenance phase. Version control, upgrade planning, and legacy support are

parts of the Deployment and Maintenance Plan.

b. System Safety Program

The System Safety Program optimizes system safety in the design,

development, use, and maintenance of software systems and their integration

with safety critical hardware systems in an operational environment.

Software Safety Program – The Software Safety Program

identifies all potential risks associated with a software installation, usage,

interface requirements, hardware/software sharing, software maintenance, and

system retirement. The Software Safety Program identifies critical risk scenarios

that affect the software’s ability to function not as designed, or to mitigate

functional design risks.

Safety Risk Management - Safety Risk Management is an

iterative process that begins with an initial safety assessment of all known

hazards. Known hazard states are stored in a Hazard Tracking System (HTS) in

order to document the mitigation associated with each hazard. Safety precepts

are incorporated during system development to reduce the likelihood of the

hazards from occurring. Safety Risk Management concludes when the residual

risks have been reduced to a level acceptable to the appropriate authority.

Safety Verification/Audits - Safety Verification and Audit efforts

are performed to ensure safety data is being collected and objectives and

requirements of the safety program are being met. Test plans, test procedures,

and results of all tests including design verification, operational evaluation,

technical data validation and verification are reviewed to ensure the safety of the

design is adequately demonstrated and that the results of the safety evaluations

are included in the appropriate test and evaluation reports. Audits are scheduled

at major program milestones so as to provide management with an indicator of

safety program progress.

16

Hazard Tracking Management – The purpose of Hazard Tracking

Management is to identify safety critical issues, evaluate hazards, and

document/manage the mitigation efforts required to minimize the impact of the

hazard. Tracking systems are part of the risk mitigation strategy and are an

ongoing effort to stabilize the safety of control-based software.

Based on the software test data, (including mishap data from

similar systems and other lessons learned), hazards associated with the

proposed design or function are evaluated for hazard severity, hazard probability,

and operational constraints. As a minimum, the Preliminary Hazard Analysis

considers the following for identification and evaluation of hazards:

 Hazardous components (e.g., fuels, lasers, toxic substances,

munitions).

 Safety design criteria to control safety-critical software

commands and responses (e.g., inadvertent command,

failure to command, untimely command or responses) must

be identified and appropriate action taken to incorporate

them into the software specifications.

 Environmental constraints including the operating

environments (e.g., temperatures, fire, lightning, and

radiation).

 Safety related equipment, safeguards, and possible alternate

approaches.

 Identification of the safety requirements, standards and other

regulations pertaining to personnel safety, environmental

hazards, and toxic substances with which the system will

have to comply.

COTS/GOTS/NDI Assessment - In an Open Architecture

environment, the COTS/GOTS/NDI assessment is centered on the exposure

related to COTS/GOTS/NDI software that shares the same architectural support.

17

The interfaces between the COTS/GOTS/NDI software and the Open

Architecture environment are thoroughly analyzed to ensure there are no

impeding conflicts. The ongoing management and/or maintenance of

COTS/GOTS/NDI software is also monitored to ensure version control is well-

documented and analyzed in order to ensure the vendor has not made changes

that may impact the safety assessments.

Simulation/Stimulation/Emulation - Simulation-Stimulation-

Emulation test documentation is evaluated to ensure proper stress, boundary,

and environmental testing meets the minimum software system safety

requirements for Open Architecture integration.

C. RESEARCH FINDINGS: SSSTRP REPORT ANALYSIS

The process of reviewing three years of SSSTRP reports was designed to

identify potential gaps in the current software acquisition SSSTRP evaluation

process, and to identify trends in TRP vendor failures. A failure is defined as any

SSSTRP report that resulted in the software acquisition process being

temporarily or permanently halted as a result of the SSSTRP review. This

section covers the methods used to gather, classify, and report the SSSTRP

failures.

A total of 86 SSSTRP reports were identified within the 2007, 2008, and

2009 fiscal years. Table 1 provides a summary of the resulting issues within

these reports. It should be noted that although the total number of issue reports

was 86, there are 177 total issues reported within these issue reports; this is due

to multiple SSSTRP reports containing multiple failures within multiple

categories. With a mean of 2.06 failures per SSSTRP failure report, the

maximum number of failures found was four and the lowest number of failures

being one. SSSTRP failure reports are not issued in cases where there is no

failure found.

18

Category # Issues
Percentage of

all Failures

Percentage of
SSSTRP
Reports

Software Safety Program 34 19.2 39.5
System Safety Program 27 15.3 31.5
Safety Verification/Audits 24 13.6 27.9
Product Integration and Test 19 10.7 22.1
Project Planning 18 10.2 21.0
Safety Risk Management 12 6.8 14.0
Validation & Verification 9 5.1 10.5
Risk Management 9 5.1 10.5
Configuration Management 6 3.4 7.0
COTS/GOTS/NDI 6 3.4 7.0
Hazard
Tracking Management 5 2.3 5.8
Sim-Stim-Emulation 4 2.3 4.7
Requirements Management 2 1.1 2.3
Deployment & Maintenance 2 1.1 2.3

Table 1: Ungrouped SSSTRP Failure Results

The figures in Table1 indicate ungrouped failures for all potential failure

modes identified within the 86 cases that were analyzed. The results show that

the majority of SSSTRP failures were found within the more complex areas of

project management and system and software safety management. Table 2

indicates the number of failures found within these areas (as well as those that

belong to other stages, such as maintenance/implementation).

Stage (grouped Categories) # Issues
Percentage of

all Failures
Software and System Safety and Risk
Management 111 62.7
Project Management (Implementation) 58 32.8
Life Cycle (Post implementation) 8 4.5
Total 177

Table 2: Grouped Error Reports in SSSTRP Failure Reports

19

Table 2 shows that approximately 63% of all reports occurred within the

system and software safety and risk management areas, which include Software

Safety Program, System Safety Program, Safety Verification/Audits, Safety Risk

Management, Risk Management, and Hazard Tracking Management. The

second most common area of problems reported was in the Project

Management/Implementation category, which included errors in the Product

Integration and Test, Project Planning, Validation and Verification,

COTS/GOTS/NDI, Simulation-Stimulation-Emulation, and Requirements

Management phases of the vendor implementation plans. Approximately 5% of

final failures occurred post-implementation in the project life cycle; these failures

fell within the Configuration Management, and Deployment and Maintenance

phases.

The conclusive evidence within the research shows the majority of

weaknesses within the SSSTRP process for Navy software acquisition occurs

within the system and software safety areas. These findings are also consistent

with previous research in the area, which found that safe software acquisition

was increasingly complex and was a consistently problematic area in Naval

acquisition processes (Rivera & Luqi, 2010).

D. LIMITATIONS OF STUDY

The SSSTRP reports that were made available by the U.S. Navy included

only declassified results. The representative nature of these reports was

impossible to determine with certainty because we did not have access to the full

set of the data, which included classified SSSTRP reports. However, because

the structure of the SSSTRP evaluation process is not affected by the

classification level of the data, there is no reason to believe that the unclassified

data used for this research is not representative of the domain.

As the reports were provided over a period of three years, it was expected

that there would be variations in format and textual content. However, the

structure of the reports varied and the reports did not display a consistent

methodology for reporting SSSTRP findings. Although the reports did have

20

general headings that could be used for guidance, the data contained in the

reports was opinionated justification for recommendations, and did not follow a

standardized evaluation and reporting format. Over the three years of report

data, there were few instructions for how a SSSTRP member should report a

finding, and what information was required for a failure report.

This lack of evaluation and reporting structure resulted in SSSTRP

evaluation reports that were largely the result of human inspection, which led to a

SSSTRP member’s personal opinions about a potential failure. Thus, the

inconsistency and weakness in internal structure of these reports made them

impossible to categorize/analyze beyond the classifications found in this

dissertation. Additionally, a large number of issues resulting in a SSSTRP failure

were present in one or more milestone phases. Since the evaluation milestones

are sequential, this was highly problematic because issues that were found in

earlier stages were problematic for future milestone requirements. "Repeating

Incidents" was widespread and persistent, and was identified across multiple

project milestones.

Related to the SSSTRP evaluation process is a human resources issue

that was identified during the examination of the reports. Our research found a

very high turnover on the SSSTRP committee, with few long-term members.

Additionally, the SSSTRP committee did not always consist of software or

process experts, but included members from other areas of expertise. The

committee members, in addition to rotating frequently, also did not have

standardized evaluation documents available in order to ease the process of

failure determination; instead, each failure was identified, analyzed, and

processed individually.

1. Vendor Self-Assessment

The SSSTRP reports did not demonstrate any evidence of self- of the

software systems submitted by vendors. The research showed a lack of readily

available standards for this self-assessment, preventing software vendors from

routinely determining whether their products would meet the demands of the

21

SSSTRP. Requirements documents were available that identified the functional

requirements of the software; however, these documents did not identify the

safety requirements and risk assessment processes used for the software.

Additionally, as the SSSTRP committee does not have a guideline for the

analysis of the safety requirements or other requirements of the submissions, it is

difficult for vendors to determine what will (or will not) pass the screening

process. Because of this ambiguous evaluation process, it is exceptionally

difficult for a vendor to determine potential areas of TRP improvement that could

increase the vendor’s chances of passing the SSSTRP evaluation process. By

extending the TRP to include a vendor self-assessment, it would be possible to

improve the overall outcomes of the process and increase the chances for the

products to pass the SSSTRP assessment.

2. Research Results Summary

The analysis of the SSSTRP reports resulted in the following summary:

 The SSSTRP is unable to sufficiently test potential naval gun

weapon system software solutions during the acquisition process.

 The Vendor Technical Data Package (TDP) requirements and

evaluation methodology is not structured in such a way that

supports a high fidelity evaluation of software safety.

The main recommendation that may be derived from this analysis is that

the SSSTRP review process may be improved with the introduction of a

methodology that can be used by both the SSSTRP members and software

vendors to evaluate software safety. Providing the SSSTRP community with

high-level models that may satisfy a portion of the software safety assessment

process improves the current inspection-based evaluation methodology. Without

a high-level modeling process, the alternative is to implement the system and to

perform testing. Manual testing is a very expensive and timely alternative, which

may be partially satisfied using the prototype methodology and tools that are

covered in Chapter III. Additionally, consider the following advantages:

22

 Short Feedback Cycles - Automating system/business processes

start with process design. The creative process of redesign requires

iterations of your ideas. The modeling timeline should be as short

as possible to align the results of each step with its input. MP

satisfies this requirement in short order as there are only seven

total constructs required to model in MP.

 Involving Domain Experts in Model Development - Because MP is

easy to learn, teaching domain experts how to model in MP is

critical to shortening the SSSTRP evaluation process. Closing the

knowledge transfer gap between business and IT may result in

models that require less testing and include lower levels of

refinement. Our modeling methodology suggests domain experts

are part of the model development team. As identified in my

dissertation (Prototype SSSTRP Evaluation Process), the domain

experts do not create all models on their own, but they are a part of

the team with technical people.

Chapter II describes the research for suitable software safety modeling

frameworks.

23

II. REVIEW OF PREVIOUS WORK

A. INTRODUCTION

The literature review discusses the current state of methodology and tools

within software safety domain, with specific focus on enterprise systems. This

review contains information about the COTS integration risks, vendor selection,

software acquisition, software architecture, the Navy’s Open Architecture

Enterprise Program, abstract modeling methodologies, and software safety

standards and frameworks. The goal of this chapter is to review the current state

of technology in order to determine if a potential solution exists that may reduce

the vendor failure rates within the SSSTRP process.

The Navy’s SSSTRP process has been using both commercial off-the-

shelf systems (COTS) and open architecture (OA) approaches to satisfy the

software requirements for new and emerging technologies associated with naval

weaponry. The acquisition process of COTS-based software exposes an

organization to the potential for operation failure due to discontinued support of

the product; acquisition or dissolution of the vendor; or aging software becoming

less compatible with newer software that has related functions. However, the

risk profiles of (COTS) software and customized software vary and may provide

different advantages and disadvantages to the implementation of new systems.

In an attempt to evaluate the effects of both COTS and OA approaches to naval

weaponry software safety requirements, the literature review chapter covers both

COTS-based solutions and custom development.

B. SOFTWARE SAFETY RISKS WHEN EVALUATING A COTS
SOLUTION

COTS software is a popular software choice for organizations that want to

acquire and implement software quickly and easily. However, lack of control

over the software configuration or lack of ability to customize the software may

lead to a less than optimal solution for the software installation, as well as making

24

the customer unduly dependent on the vendor. Chapter II.B. discusses the

software safety risk assessment process for COTS, as well as the particular risks

associated with COTS software acquisition.

C. GUN WEAPON SYSTEM SOFTWARE SAFETY RISK: SOFTWARE
OBSOLESCENCE

One of the major software safety risks of COTS is obsolescence (Merola,

2006). Merola defined software obsolescence as follows: “Software applications

become obsolete when they are retired from use and taken off the market due to

technology advancements, decrease in product popularity, or other market

factors.” Merola studied the issue of software obsolescence in military

applications, where systems development moves slowly enough that software is

often considered to be obsolete in civilian systems before it even makes it into

military systems. While most civilian development does not move as slowly as

military development, the problem also plagues the civilian market. Merola

described software obsolescence risk in the systems design, integration,

production, and program management environments rather than in the

operational environment. Merola remarked that the specific risk in software

obsolescence was, “the inability to maintain an infrastructure to properly integrate

the systems, develop, maintain, or troubleshoot hardware or software code.”

Merola distinguished between logistical, technical, and functional obsolescence

as well. Logistical obsolescence is the point at which system support, new

licenses, or expansions are no longer available from the vendor (Merola, 2006).

Functional obsolescence occurs when the software no longer functions as

required or cannot be modified to perform required tasks, and technical

obsolescence occurs when technical specifications of the system have been

overtaken by technical advances (Merola, 2006). Thus, a system may remain

functionally useful even after it has become technically obsolete, and it may

remain technically and functionally useful even after its logistical obsolescence.

Merola provided a number of recommendations for avoiding software

obsolescence risk when utilizing COTS products for systems development. The

25

first of these recommendations was to include an analysis of potential

obsolescence in the market analysis research typically performed during the

software acquisition process (Merola, 2006). The market analysis is performed

to determine relative software quality, cost, and other features of the software.

Although software vendors are not typically willing to reveal their software

obsolescence plans, an examination of the vendor’s historical patterns of

software obsolescence and their software renewal cycle may provide insight into

the likelihood of obsolescence in the product being chosen (Merola, 2006). The

market analysis should include not only the vendor’s obsolescence planning, but

also an investigation of the current state of the technologies in use and how they

may engender technical obsolescence in the near future (Merola, 2006).

Although the market analysis cannot prevent all potential risk from software

obsolescence, it may help an organization avoid implementation of a system with

potentially obsolete COTS components, as well as giving a potential timeframe

for the obsolescence of the component in use (Merola, 2006).

Leveson argued that the key to understanding safety lies in the

understanding that no one component failure or no human error ever occurs in

isolation - an accident is a result of some systemic problem (Leveson, 1995).

Leveson argues that more than ever, software engineers/architects/managers

must understand the responsibilities of software safety and develop the skills

needed to anticipate and prevent accidents before they occur. Professionals

should not require a catastrophe to happen before taking action. Leveson

examines the following software safety fundamentals:

 Demonstrate the importance of integrating software safety efforts

with system safety engineering

 Describe models of accidents and human error that underlie

particular approaches to safety problems

 Present the elements of a software program, including

management, hazard analysis, requirements analysis, design for

safety, design of the human-machine interface, and verification

26

Software allows unprecedented levels of complexity and new failure

modes that are starting to overwhelm the standard approaches to ensuring

safety. Software obsolescence in naval gun weapon systems carries an inherent

risk that requires continual software safety assessments, with specific focus on

how the software acquisition process may affect legacy systems.

D. VENDOR SELECTION SOFTWARE SAFETY RISKS

The choice of vendor for the provision of gun weapon system changes

carries with it a number of risks that may affect the SSSTRP evaluation process.

These risks include product availability, schedule slippage, vaporware,

modifications to the product that disrupt system compatibility or design, inter-

component compatibility, and lack of continued support (Rehman, Yang, Dong, &

Ghafoor, 2005). As in obsolescence and requirement mismatches, a market

survey before the choice of a COTS vendor will mitigate the potential for vendor-

based risk, but there is no way to eliminate the risk due to changes in software

components, something that all software undergoes as new vulnerabilities and

bugs are exposed (Rehman, Yang, Dong, & Ghafoor, 2005). Therefore, a

decision-making framework is needed to help minimize the risk from vendor

changes and unreliability that may help in avoiding some of the more common

risks, such as schedule slippage and vaporware (Rehman, Yang, Dong, &

Ghafoor, 2005).

E. REQUIREMENTS AND COTS CAPABILITY MISMATCHES: A
SOFTWARE SAFETY RISK

A potential SSSTRP evaluation risk is the mismatch between systems

requirements and COTS capabilities. “Such mismatches are inevitable as COTS

products are made for broad use while system requirements are specific to their

context,” (Mohamed, Ruhe, & Eberlein, 2007). The issue of COTS capability

mismatch is particularly relevant to naval gun weapon systems as a significant

risk may be posed for successful product integration into an existing system. If

the degree of mismatch is too great between the system requirements and the

capability of the chosen COTS system, excessive resolution costs for providing

27

“glueware” and other customized changes to the system may result in

unidentified software safety risks, or the system could simply be made unsuitable

for the use to which it will be put (Mohamed, Ruhe, & Eberlein, 2007).

The use of formal decision support systems, rather than an ad hoc

approach has been recommended (Mohamed, Ruhe, & Eberlein, 2007) to

resolve these requirements/capabilities mismatches. Also recommended is the

use of a formal method to determine if the mismatches can be resolved and, if

so, the most efficient choice of resolution methods (Mohamed, Ruhe, & Eberlein,

2007). A decision support framework, called Mismatch Handling for COTS

Selection (MiHOS), is provided as a means of comparing the cost, effort, and risk

of resolution actions for requirements/capabilities mismatches in COTS-based

software implementations (Mohamed, Ruhe, & Eberlein, 2007).

F. SOFTWARE ACQUISITION EVALUATION: PERFORMANCE AND
RELIABILITY

In a naval gun weapon system, software performance and reliability are

high-priority requirements when evaluating a potential software solution. The

development of nonfunctional requirements, including performance aspects,

software quality, speed of execution, and other quality of service factors was a

latecomer to the component-based architecture paradigm (Bertolino & Mirandola,

2004). Initially, component-based architecture was concerned only with

functional specifications—the way in which the component could be used and the

component’s functional purpose. In order to ensure performance of component-

based systems, care must be taken in the architectural specification and

development of the system, and as much information as possible about the

components must be gained (Bertolino & Mirandola, 2004). However, this

approach may not be sufficient because component-based architecture is often

relying on different systems that may not be fully compatible with each other.

This may slow development or reduce the performance of the system.

Reliability is another software safety consideration that may affect the

overall usefulness of the component-based system. “One of the motivations for

28

specifying software architectures explicitly is the use of high level structural

design information for improved control and prediction of software system quality

attributes” (Reussner, Schmidt, & Poernomo, 2003). However, with component-

based architecture, in some cases the specifics of the individual components

(particularly nonfunctional characteristics such as component reliability) may not

be known explicitly and must be determined either during the implementation of

the system or, less ideally, after the system has entered use. Some specific

attributes that may not be known about the component include the usage profile

and the required context (Reussner, Schmidt, & Poernomo, 2003). The usage

profile of a software component includes how often it is used as well as under

what circumstances; thus, a software component that is used infrequently may

not be as well understood as those that are used frequently. The required

context includes the other components within the system, as well as external

components like middleware, operating systems, and network services, any of

which may prove to be unreliable.

These parameters were used to create a predictive model of software

reliability that took into account not only the component reliability, but also the

potential interface with external components (Reussner, Schmidt, & Poernomo,

2003).

Tamura et al. provided a similar model which uses a stochastic approach

to software reliability (Tamura, Yamada, & Kimura, 2006). These authors

specifically recommend including the integration and testing stages of

development in the main software development phase, in order to head off any

difficulties observed with the component’s reliability during the design stage

(Tamura, Yamada, & Kimura, 2006). Although these models are highly technical,

they can be used by component-based system architects to detect issues with

component reliability and circumvent them by either redesigning the system

dependencies or choosing a more reliable component. A more user-friendly

modeling methodology that allows the nontechnical stakeholder to visualize the

potential software safety scenario is needed. Additionally, integration of the

models by Tamura et al. and Reussner et al. are not usable by SSSTRP

29

evaluation process due to their level of complexity, the time requirements for

development, and the inability of the stakeholder to understand the results.

G. SOFTWARE ARCHITECTURE MODELS AND CONSTRAINTS

UML (Unified Modeling Language) is commonly used to design and

analyze component-based systems (Booch, Jacobson, & Rumbaugh, 2000)

(Coronato, d'Acierno, & De Pietro, 2005), and is the current tool of choice when

modeling naval gun weapon systems. Specifically, D.Harel’s state charts are

commonly used when modeling system states (Booch, Jacobson, & Rumbaugh,

2000). The major problem with state charts is that the process of creating a

formal relationship between the system and the state chart is extremely difficult

and highly complex, and thereby too time consuming to be practical for the navy

gun weapon system acquisition process.

These modeling practices are meant not only to provide a blueprint for the

system design, but also to test the system’s fidelity to requirements and design

specifications following implementation. Coronato et al. (2005) remarked that:

By defining the fidelity of the model as the measure of the
correspondence between the model and the final system, it can be
stated that UML enables designers to produce low fidelity models to
capture high-level system characteristics in the early design phase,
as well as high-fidelity models to specify low-level system details in
the late design phase. (Coronato, d'Acierno, & De Pietro, 2005)

Other significant advantages of using the UML modeling specification are

that it creates a standard representation for use between development teams,

such as development efforts between a potential vendor and the organization

contracting the development. One problem with the use of UML, however, is that

there is no way to represent design constraints upon the system, particularly

during translation to another language for implementations, such as IDL

(Implementation Definition Language) (Auguston, Program behavior model

based on event grammar and its application for debugging automation, 1995).

According to these authors, “Design by Contract” is the practice of contracting a

vendor or outsourcer to provide custom or semi-custom software. The “Design

30

by Contract” practice is dependent on the availability of constraints in order to

enforce the design practices required within the system (Auguston, Program

behavior model based on event grammar and its application for debugging

automation, 1995).

Constraints, which are derived from high-level business requirements or

business rules, provide the explicit requirements definition for the software

system design. Constraints can be difficult to manage between software

components, especially in cases where the components do not have a consistent

way in which they handle the constraint processing. A modeling language that

would allow for the definition of constraints in a way in which they can be passed

from component to component is described as Constraint Description Language

(CDL) (Coronato, d'Acierno, & De Pietro, 2005). The CDL language was derived

from standard OCL and was adapted to component architecture. It is noted that

ignoring the problem of constraints was not possible if the end result of the effort

was to be a coherent software system; however, there was no readily available

way in which to transfer constraints between different components (Auguston,

Program behavior model based on event grammar and its application for

debugging automation, 1995). The lack of consistent treatment of constraints

between components represents a significant weakness in component-based

architecture. As the authors noted, the issue of managing shared constraints is

not a difficulty that cannot be overcome; however, it should remain a

consideration in development of a component-based software system (Auguston,

Program behavior model based on event grammar and its application for

debugging automation, 1995).

The development of languages specific to component-based systems

architecture and design has been heavily researched over the last ten years, with

new architectural languages, such as AAL, being the byproduct (Booch,

Jacobson, & Rumbaugh, 2000). Component-oriented programming that

implements the systems is a recent development in software engineering.

Fabresse et al. described a conceptual language for component-based

architecture and design (Fabresse, Dony, & Huchard, 2008). Their language,

31

SCL (Simple Content Language), described only the basic and essential

elements of a component-based design language, as derived from a large

number of existing component-based programming languages, like ComponentJ,

ArchJava, Julia/Fractal, Lagoona, and Piccola (Fabresse, Dony, & Huchard,

2008). It is noted that the impetus for component-based design has recently

shifted from software reuse at design to reduction of evolution costs by design for

software reuse (Fabresse, Dony, & Huchard, 2008); thus, it is necessary to have

customized ways in which to provide the integration or “glue” that allows

components to be combined into a cohesive system.

Combining systems via “glue” has an inherent requirement to evaluate a

potential addition to an existing architecture. Auguston (2009) suggests an

approach to formal software system architecture specification based on behavior

models, (Auguston, Software architecture built from behavior models, 2009).

Monterey Phoenix (MP) (Auguston, Monterey Phoenix, or How to Make Software

Executable, 2009) is a methodology that defines the relationship between system

interaction and the environment. The MP methodology includes the use of event

grammar that generates event traces using ordered logic. The MP framework

provides the ability to formally evaluate software architecture using assertions.

Auguston showed how MP contains the ability to check Assertions. MP is

particularly applicable to the naval gun weapon system software safety domain

because it (1) is easily understandable by the nontechnical user; (2) supports

reuse as the models are designed at the abstract level with no requirement to

provide software details; (3) formalizes the evaluation of potential naval gun

weapon system software solutions by creating assertions of unsafe software

safety states and testing for counter examples of assertions; and (4) can output

visual representations of scenarios in formats that are easily understood

(Auguston, Michael, & Shing, Environment behavior models for automation of

testing and assessment of system safety, 2006).

Auguston’s work in Environmental Behavior Models is particularly

applicable to the naval gun weapon system software safety domain as the

SSSTRP requires exhaustive testing before modifications to a naval gun weapon

32

system are approved. Jackson's “Small Scope Hypothesis” (Jackson, Software

abstractions: logic, language, and analysis, 2006) (Jackson & Damon, Elements

of style: Analyzing a software design feature with a counter example detector,

1996) argues that a high proportion of bugs can be found by testing the system

within some small scope. Jackson’s hypothesis, combined with Auguston’s work

in environmental modeling, is particularly applicable when attempting to solve the

issue of evaluating software safety issues during the naval gun weapon system

acquisition process.

Software safety research in real-time systems has led to the development

of the Tempo Toolkit. The Tempo Toolkit is an extension of the IOA toolkit,

which provides a specification simulator, a code generator, and both model-

checking and theorem-proving support for analyzing specifications. The toolkit

consists of the Tempo language, which closely matches the format of the

pseudo-code used for IOA. The Timed I/O Automaton Language (TIOA)

provides the semantic basis for the Tempo Toolset (Archer, Lim, Mitra, Lynch, &

Umeno, 2008).

H. SOFTWARE ARCHITECTURE FLEXIBILITY: AN ACQUISITION RISK

The SSSTRP evaluation process was meant to support a streamlined,

thorough evaluation of proposed gun weapon system changes. Naval gun

weapon systems require architectural flexibility in order to respond to new and

improved software capabilities that strengthen a ship’s weapons systems. One

of the major benefits of component-based architecture is the flexibility that is

allowed by the process. Flexibility is necessary because “software needs to be

flexible in order to be adapted to new or changing work situations in its context of

use” (Wulf, Pipek, & Won, 2008). The flexibility with which software systems are

developed will carry through to the implementation stage of the process and will

be required to continue past the point of implementation in order to provide for

changing requirements. Component–based architecture is ideal for providing

flexibility because individual components can be upgraded or replaced as needs

change. For example, a system with a user interface component that is separate

33

from a database component can have its user interface changed as user

requirements or technologies evolve, without affecting the existing database

component (Wulf, Pipek, & Won, 2008). Component-based development has the

potential to reduce maintenance costs, as the components can be updated only

as needed, rather than requiring a full refactoring of the system in order to update

one part of the system. Wulf et al. described an end-user framework that

described a way in which the software development process can be flexible

enough to allow changing user needs while reducing the difficulty and

maintenance costs associated with these changes (Wulf, Pipek, & Won, 2008).

Figure 3: CBD Flexibility Framework (From Wulf, Pipek, & Won, 2008)

Component-based architecture and software design provides a way to

design systems to account for system requirements without excessive cost or

development time. It is based in assembling software components, which may

be either custom-designed vendor-sourced custom components, semi-custom

components (such as ERP modules), or commercial off-the-shelf (COTS)

software components. Although the component-based architecture process is

flexible and modular, there are difficulties relating to the black-box nature of

many components, including difficulty evaluating nonfunctional requirements like

reliability and software quality, and interoperability between components.

34

I. DEPT OF THE NAVY OPEN ARCHITECTURE ENTERPRISE (OA
ENTERPRISE) PROGRAM

The requirement for naval gun weapon systems to use open architecture

was established in 2005 in a memo from the Navy Program Management Office.

The memo states that, “Naval OA transformation must match the rapid evolution

in commercial and military technology. Not only must we shorten the kill chain

across the family of systems; we must also shorten the cost it takes to deliver

capability requirements” (Department of the Navy, 2005). Motivations for the

adoption of open architecture included reduction of cost and time invested in

developing and implementing new systems, and the ability to design systems

that are technologically advanced, as compared to the previous development life

cycle, in which the end product was typically obsolete by the time it was placed in

service (Department of the Navy, 2005). Principles for the OA system

implemented by the Navy include the following:

 Modular design and design disclosure

 Reusable software components selected using a best-in-breed

strategy, rather than the previous single-vendor strategy

 Interoperable joint warfare communication and information

exchange capability

 Design for life cycle affordability, including tactics such as system

design and development and support for COTS obsolescence

 Encouragement of alternate solutions and sources in order to

improve competitive practices and system capabilities (Department

of the Navy 2)

The OA Enterprise system is required to be integrated into all Navy

systems and system requirements, and is one of the first identifiable federal

programs that require open architecture in the system (Department of the Navy,

2005). The Navy established an Open Architecture Enterprise Team (OAET) to

oversee the efforts and ensure that the open architecture requirement was

35

respected in all ongoing and future Navy system designs. The document also

included short-term objectives and system requirements to begin using the OA

Enterprise program immediately while the long-term details were worked out.

The program has been active since that time.

The Navy OA model is described in the OA Assessment Model

(Department of the Navy, 2005). The OAAM is built on a matrix framework using

business and architectural/technical characteristics; the level of compliance of

each system is assessed on the individual criteria. Figure 3 demonstrates the

OAAM’s matrix; the chart details the level of business and technical compliance

(Department of the Navy, 2005). Each level of the model is accompanied by

business integration and architectural technical characteristics; in both axes, “0”

represents the least integration of open architecture principles, while “4”

represents the highest level.

Figure 4: OA Assessment Model Matrix (From Department of the Navy,
2005)

36

Level Business Technical
0 Isolated Closed
1 Connected Layered
2 Migrating to openness Layered and open
3 Common Common
4 Open and net-centric Enterprise

Table 3: OAAM Development Levels (From Department of the Navy, 2005)

The OA Enterprise Contract Guidebook is produced by the Navy to ease

the integration of open architecture as a design requirement. The OA Enterprise

Contract Guidebook offers insight into the program’s intentions toward the use of

open architecture and how it handles the acquisition of it. The guidebook,

designed as part of the Navy’s Open Architecture Enterprise (OA Enterprise)

initiative, is intended to “provide Program Managers, Contracting Officers, and

their supporting organizations with guidance and example contract language to

assist them in incorporating open architecture principles into their contracts”

(Department of the Navy, 2008). The document also provides insight into the

use of open architecture within the Navy, including its history, requirements, and

scope.

The intent of the document is not to enforce the use of the language

required, but to suggest appropriate language for the contracts used for

acquisition of open architecture products. The document also provides an

overview of Naval OA architecture and intent. The principles of design include

use of both COTS and open standards in order to ensure interoperability and

fast-swap capabilities for software, and includes standard interfaces to ensure

system communications capabilities (Department of the Navy, 2008). It is noted

that regardless of the source of the software component, it should be compliant

with the OA Assessment Model (OAAM) at the highest level possible for the

given system.

The Contract Guidebook provides insight into the software and systems

development process required by the Navy. The OA Enterprise program was

undertaken to ensure that the Navy had access to information technology that

37

was up to date, maintainable, and reliable. By using the open architecture

paradigm as a requirement for new systems design, the Navy gained the ability

to update its systems easily, to interface its systems, and to ensure that its

systems could remain functional in spite of COTS obsolescence. It also placed

the government in a stronger position by requiring that the purchasing

organization seek out and exercise intellectual property and data rights. Few

Navy documents described live projects that had been undertaken using the new

guidelines; examples of the outcomes of these guidelines were derived from the

literature rather than Navy documentation.

J. SOFTWARE ACQUISITION CHALLENGES OF A NAVAL GUN
WEAPON SYSTEM

Testing and software evaluation of a naval gun weapon system that is

composed of COTS products is a known problem (Bhansali, 2005). Azani

discussed the specifics of testing and evaluation of the open system in terms of

strategic requirements and goals (Azani, 2001). Azani noted that the use of open

systems provided government IT systems with advantages, including the ability

to take advantage of best-in-breed commercial systems and ensure

interoperability, commonality, portability within the system, and the ability to

replace obsolete systems. Without careful system design, the testing and

evaluation of a system assembled from multiple commercial components could

be exceptionally difficult to complete successfully.

The design of a testing system that can handle multiple products from

various vendors is complex, particularly in cases where some parts of the system

may be COTS that do not have open-code bases to allow specific design of the

test systems. The testing and evaluation of an open system should be

determined before implementing the system, and priority should be given to

designing for test and evaluation ease (Azani, 2001). Rajsuman and Noriyuki

presented one solution to the problem. The Open Architecture Test System was

designed to provide a method to test the implementation and integration of open

architecture systems incorporating modules from many vendors (Rajsuman &

38

Noriyuki, 2004). The architecture proposed was intended to test the full

operation of the system. The architecture also allowed for live testing and

simulation, and was intended to decrease testing time and simplify the testing

process (Rajsuman & Noriyuki, 2004). Integrated system and user test

architecture would be a useful addition to an organization transitioning to an open

architecture requirements paradigm.

Another software safety issue that may emerge in the use of an open

architecture is the dependability of the system. Barrett offered one solution to

ensuring reliability in open architecture systems, the Delta-4 project, which is

defined as “an open, fault-tolerant, distributed computing architecture for use in

application areas such as computer-integrated manufacturing, process control,

and office automation” (Barrett, 1993). The system was intended to address the

issue of reliability in open architecture systems that were used in applications

that required reliable throughput and response time; however, the author noted

that the system was not designed for mission-critical or safety applications

(Barrett, 1993). The system was based on a Dependable Communication

System with the components of the architecture spread through computers and

linked by the Dependable Communication System. Software components could

be replicated to provide redundancy, with the caveat that host machine

configurations had to be consistent across machines in order for the redundancy

capability to be used (Barrett, 1993). The communications system allowed for

multi-point communication, providing for robust and dependable communication

between replicated units. The system also offered fault-tolerance in order to

provide a level of protection against hardware failures and a variety of

communication mechanisms (Barrett, 1993).

Although Barrett’s system is not intended for mission-critical systems, it

provides a blueprint for how the requirement for dependability may alter the

design of an open system. Enhancements to the system would be required in

order to allow for the level of dependability required in more mission-critical

applications, but the system provides a framework for designing a dependable

open system.

39

A third issue in analyzing potential software solutions for a naval gun

weapon system is the problem of trusted computing. Naval gun weapon systems

have a strict requirement to restrict access to trusted users (and systems) and to

assure that security level. Trusted computing within an SoS becomes more

difficult because components and their authentication methods may be changed

in an ad hoc manner and the overall design of the system may not be set at the

initial use of the system (England, Lampson, Manferdelli, Peinado, & Willman,

2003).

K. SOFTWARE SAFETY REQUIREMENTS FRAMEWORKS

Initial searches found numerous frameworks related to software safety.

This review is focused on frameworks that make the software package a primary

target of the evaluation. While some of these frameworks have been established

in the working software development environment, others have only been

described within the academic computer science area. The majority of those

identified standards are from military or other safety-critical areas rather than

from the business or consumer software environment. Most of these standards

have been developed for use in military, transportation, medical, communication,

and nuclear power systems (Medikonda & Panchumarthy, 2009). As Barrett

Medikonda and Panchumarthy noted, most of these systems are real-time

control systems, lending an extra level of complexity to safety requirements

design.

The research describes a number of frameworks and identifies potential

advantages and disadvantages for use within the Naval Weapons Gunfire

software systems. Table 4 contains the known software safety requirements

standards that use software safety and security features as a main component

within the software specification process.

40

Standard Description

MoD 00-55

Requirements for
Safety-Related

Software in [UK]
Defense Equipment

MoD 00-56

Safety Management
Requirements for [UK]

Defense Systems

DO-178B
Software

Considerations in
Airborne Systems and

Equipment
Certification

ARP 5754

Safety Assessment
Process on Civil

Airborne Systems and
Equipment

Mil-Std-882 System Safety Program
Requirements

Software Safety Hdbk Software System Safety
Handbook

IEC 61508-3

Functional Safety of
Safety-Related

Systems, Part 3:
Software Requirements

IEC 60880

Software for
Computers in Safety
Systems of Nuclear

Power Stations

ANSI/ISA-S84.01
Application of Safety

Instrumented Systems
for the Process Control

Industries

ANSI/AAMI SW58:2001
Medical Device

Software Life Cycle
Processes

NASA-STD-8719.13

Software Safety

UL 1998

Standard for Software
in Programmable

Components

EN 50128
Software for Railway

Control and Protection
Systems

MISRA Auto Std

Development
Guidelines for Vehicle

Based Software
IEEE 1228 Standard for Software

Safety Plans

Table 4: Known Software Safety Standards (Bhansali, 2005)

41

As noted in Table 4, most of these systems are designed for use in safety-

critical real-time applications, indicating that characteristics of any of them could

be considered appropriate when examining the potential applicability to the Naval

Weapons Gunfire system. However, standards such as ANSI/AAMI SW58:2001,

which focus on safety-critical application of medical software, may not be as

appropriately applied to the current problem as other defense standards may be.

Identified standards that may be most applicable to the current research problem

include MoD 00-55, MoD 00-56, DO-178B, Mil-Std-882, Software Safety Hdbk,

IEC 61508-3, NASA-STD-8719.13, and IEEE 1228. The MoD 00-55 and MoD

00-56 will be excluded from consideration due to their focus on the United

Kingdom’s military requirements which, although similar to those of the United

States, are not completely applicable. A specific study of IEC 61508-3 and

NASA-STD-8719.13 are found later in this chapter, as both are highly applicable

to the current research problem.

Software requirements frameworks focused on software safety tend to be

highly customized to the environment, rather than being generic models;

although attempts have been made to define a generic software safety

requirements framework, these attempts have not been successful (Bhansali,

2005). General criteria for a software safety requirements framework have been

identified by Bhansali (Bhansali, 2005). The general subset of requirements has

been identified by examination of known software safety standards. Table 5

indicates the required elements identified in order to establish what Bhansali

describes as the minimum subset of requirements needed to generate a one-

size-fits-all software safety requirements framework. These requirements were

identified by examination of standards from across all areas of industry,

government, and safety-critical applications. Though Bhansali identified the

specific required elements for such a generic framework, he did not make any

determination of how these elements should be implemented. Bhansali’s model

of a generic requirements framework indicated five levels of security, with

different levels required for each of these models; the assumption was that there

would be different requirements per level of safety, indicating different

42

requirements for safety standards and specifications. The application domain

would determine in most cases which of these requirements was needed at

which level (Bhansali, 2005). The requirements for each level are identified

within this research; however, the requirements at each level would need to be

determined by the overall requirements of the system in question, rather than

through a generic modeling process. (Bhansali, 2005).

Functional or preliminary

hazard assessment
System safety
assessment

Software requirements
Validation

Special software
Architecture

Safe design subset Safe code subset
Traceability analysis Independent code

Analysis
Derived requirements

Validation
Equivalent class testing

Boundary value testing Machine instruction
Coverage

Machine branch
Coverage

Data set/use analysis

Control flow analysis Stack analysis
Timing analysis Numeric analysis

Complexity
Measurement

Software quality
Assurance

Software configuration
Management

Software data load
Management

System safety
Verification

Table 5: Required Elements for a Generic Software Safety Requirements
Framework (From Bhansali, 2005)

A truly generic model has not yet been established to drive the

construction of software safety in any application domain. A number of models

that increase the generality of existing models or provide a general model that

can be used to identify the safety requirements of a given system have been

constructed. One recent model which integrates the factors, criteria, and models

(FCM) approach of McCall and Boehm (more commonly used in quality analysis

of software that is not highly safety-aware) was constructed by Medikonda and

43

Panchumarthy (Medikonda & Panchumarthy, 2009), and is demonstrated in the

figure below. As can be seen in the system, the primary interaction with the

requirements process within the framework is the completeness of requirements

(based on system hazard analysis), and the identification of safety critical

requirements is the main area in which criteria regarding software requirements

interact. Many distinctions between levels of safety requirements are used in the

model. These levels include safety requirements, which specify how safe the

system should be (identified in many models by safety levels, as noted by

Bhansali); safety-significant requirements, or functional and other quality

requirements for safety requirement achievement; safety system requirements,

which are requirements for internal safety systems such as automated shutoff

switches, fire protection systems, etc; and safety constraints, or requirements for

use of specific safety systems (Medikonda & Panchumarthy, 2009). Appropriate

identification within the requirements-setting stage is key in Medikonda and

Panchumarthy’s model for identifying the requirements for software safety

quality. Medikonda and Panchumarthy’s model has not yet been placed into

wide use, and stands as a potential generic model rather than a tried and tested

one.

44

Figure 5: Software Safety Framework (After Medikonda & Panchumarthy,
2009)

L. NASA SOFTWARE SAFETY STANDARD (NASA-STD-8719.13)

One of the most comprehensive software safety requirements frameworks

available is the NASA standard NASA-STD-8719.13 and its accompanying

support materials and frameworks. The standard is applied to all software used

in NASA (NASA, 2009), which makes the comprehensive software safety

standard particularly applicable to the SSSTRP domain. The NASA standards

for software safety have emerged from examination of the causes and effects of

aerospace accidents, and determination of requirements for software safety that

have emerged from the area (NASA, 2009). NASA-STD-8719.13 is based on the

NASA Safety Manual (NPR 8753.3), which identifies the characteristics of safe

systems and describes how these systems can be appropriately identified

(NASA, 2009). The standard is accompanied by a guidebook, NASA-GB-

Software
Safety

Metrics System Hazard Analysis

Completeness of
Requirements

Identifying Safety Critical
Requirements

Design Based on Safety
Constraints

Run-Time Issue
Management

Safety Critical Testing

Factor

Criteria

45

8719.13, which offers information on how the standard should be applied within

the process of software engineering and requirements determination. The NASA

standard is intended to apply to custom-engineered software, commercial off-the-

shelf (COTS), modified off-the-shelf (MOTS), and government off-the-shelf

(GOTS) software (National Aeronautics and Space Administration, 2004). The

NASA standard is one of the most fully-featured software safety requirements

available.

NASA 8719.13 identifies software safety requirements starting in the

conceptual phase of the software design or acquisition process (National

Aeronautics and Space Administration, 2004). The 8719.13 document purpose

is described as being “to provide requirements to implement a systematic

approach to software safety as an integral part of the project’s overall system

safety program, software development and software assurance processes”

(National Aeronautics and Space Administration, 2004). Process and technical

requirements for system safety are included in the description. Requirements for

identifying safety-critical applications and systems that will impact these safety-

critical applications, project management, planning and control activities, life

cycle analysis, and software safety throughout the software life cycle are

addressed; also identified are areas that would require modified approaches to

software safety, such as COTS, MOTS, or GOTS systems (National Aeronautics

and Space Administration, 2004). Legacy systems and the regulations for

ensuring that these systems adhere to current safety standards and

requirements are addressed (National Aeronautics and Space Administration,

2004).

The NASA standard contains a comprehensive discussion of how to

determine whether or not a given system is safety-critical. For the evaluation, it

uses guidelines including factors such as the cause or contribution of a hazard,

hazard control or mitigation, and processing safety-critical commands or data

(National Aeronautics and Space Administration, 2004). The detailed application

behavior identification approach is intended to provide a complete risk

assessment of how the software will be used, as well as what other requirements

46

exist for its determination. The process of identifying software safety

requirements is performed through a preliminary hazard analysis (PHA), or risk

assessment process, which examines the role of the software within the overall

system. Software evaluation occurs during the conceptualization phase, before

the planning for custom software or acquisition of non-custom software begins

(National Aeronautics and Space Administration, 2004). The process of the PHA

involves identifying hazards for specific requirements or system design choices

for the software, and an overall system safety analysis (National Aeronautics and

Space Administration, 2004). These analyses are then used to construct specific

safety requirements for the software in terms of functionality and contextual

placement within the system as a whole (National Aeronautics and Space

Administration, 2004). These requirements are designated as software safety

requirements, which are then integrated into the design or acquisition process

alongside other functional and nonfunctional requirements for the software

(National Aeronautics and Space Administration, 2004). A software safety plan

is established and is maintained alongside the software as a record of the safety

choices that were made during the conceptual stage of the design process. The

model identifies archival processes that should be undertaken. The

accompanying Guidebook can be used to operationalize the standard within the

organizational environment; although the Guidebook is specific to NASA’s

organizational and development structure, much of the information within it is

applicable to the naval gun weapon system domain.

M. IEC 61508-3

IEC 61508-3 is the IEC standard subsection that identifies the process of

requirements determination for safety-critical applications (Medikonda &

Panchumarthy, 2009). Although IEC 61508 was only published between 1998

and 2000, it had been in development since the mid-1980s through a Task Group

designed to assess the challenges involved in ensuring software safety in

programmable electronic systems (PES); these systems include computers and

real-time embedded systems (Bell, 2006). There are currently eight identified

47

parts of IEC 61508, including Functional Safety and IEC 61508; General

Requirements; Requirements for Electrical, Electronic and Programmable

Electronic Systems; Software Requirements; Definitions and Abbreviations;

Examples of Methods for the Determination of Safety-integrity Levels; Guidelines

on the Application of parts two and 6; and Overview of Techniques and

Measures (Bell, 2006). Part 3 (Software Requirements) holds the normative

requirements (indicated by “shall”) that are applicable (Bell, 2006).

As in NASA-8719.13, IEC 61508’s safety requirements determination

process contains a preliminary evaluation of the requirements for the system

design (Bell, 2006). The focus is safety, as determined at the functional

specification level, since research has indicated that the functional specification

process is where the majority of safety-related failures in software occur (Bell,

2006). IEC 61508 is built on four safety integrity levels, which identify potential

failure points and identify measures for overcoming the potential for failure within

these systems (Bell, 2006). These safety integrity levels are identified through

the probability of failure, although these identifications are different depending on

the level of the function’s demand and/or continuous operational mode (Bell,

2006). In the case of a low-demand software system or component, the

probability is defined as the probability that the component will fail to perform

when demanded, while for high-demand and continuously operating systems, the

definition is the probability of a dangerous failure per hour (Bell, 2006). IEC

61508 takes a risk-based approach to determining software safety, identifying the

potential outcomes of a failure as well as its probability in order to determine

whether a design is acceptable or unacceptable in terms of safety (Bell, 2006).

IEC 61508 identifies requirements determination for software safety

requirements and includes a complete software life cycle approach to

determining software safety in the overall case (Bell, 2006). Figure 5

demonstrates the life cycle approach in detail.

48

Figure 6: IEC 61508 Life Cycle Framework (From Bell, 2006)

As demonstrated by Bell’s IEC 61508 Life cycle Framework, the focus on

safety requirements is during the conceptual process and before integration.

Unlike the NASA standard, little attention is paid to off-the-shelf software or the

modification of legacy software, which could be rectified by modification of the

framework structure in order to meet the needs of the current research.

Although IEC 61508 is presented as a universal standard for software

safety requirements, the framework lacks focus and features for other areas of

software design (vitally, in this case, excluding military applications), and “the

approach taken is ‘do it all’ or to justify not doing it at all” (Bhansali, 2005). Thus,

IEC 61508 does not meet the requirements for naval gun weapon system

software safety evaluation. The IEC 61508 standard does not directly apply to

the naval gun weapon system SSSTRP environment; however, it has been used

successfully within the military system environment in the past. Although IEC

49

61508 is a paid standard, it has a record of positive application, and it is a

carefully designed standard that can be modified to meet many of the needs of

the current project.

In summary, the IEC 61508 standard is less complete than NASA 8719.13

(National Aeronautics and Space Administration, 2004), as it does not contain

requirements or specifications for functional safety or safety verification

requirements, which decreases the scope of safety requirements determination it

offers (Bell, 2006). These potential disadvantages do not remove the IEC 61508

standard from consideration for use in the naval gun weapon system domain, but

do reduce its utility and increase the amount of difficulty involved in the system’s

use.

N. SUMMARY

The literature review discusses the current state of methodology and tools

within the software safety domain, with specific focus on enterprise systems.

This review contained information about COTS integration risks, vendor

selection, software acquisition, software architecture, the Navy’s Open

Architecture Enterprise Program, abstract modeling methodologies, and software

safety standards and frameworks.

The literature review has demonstrated the need for a modeling

methodology that can model the system’s interaction with the environment.

Additionally, a capability gap exists that enables the SSSTRP evaluation team to

accomplish an evaluation of both functional and nonfunctional requirements,

such as performance aspects, speed of execution, and other software safety

quality of service indicators. The next chapter addresses the details of a solution

to the problem of pre-acquisition software safety analysis using the Monterey

Phoenix (MP) modeling methodology.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

III. SYSTEM ARCHITECTURE MODELING METHODOLOGY
FOR NAVAL GUN WEAPON SYSTEM SOFTWARE

A. INTRODUCTION

The Introduction chapter explains the specific problems associated with

the SSSTRP naval acquisition process, and the concept of the system

architecture modeling methodology that was developed to address these

problems. This chapter also contains demonstrations of prototype software that

implements the modeling methodology, as well as test cases using a naval gun

weapon system. Finally, this chapter contains a suggested prototype SSSTRP

evaluation methodology that describes how the tools may be implemented within

the current SSSTRP process.

Providing the SSSTRP community with high-level models that may satisfy

a portion of the software safety assessment process improves the current

inspection-based evaluation methodology. Without a high-level modeling

process, the alternative is to implement the system and to perform testing.

Manual testing is a very expensive and timely alternative, which may be partially

satisfied using the prototype methodology and tools that are covered in this

chapter.

The proposed SSSTRP evaluation methodology and tools that are

demonstrated in this chapter improve the SSSTRP evaluation process in the

following ways:

 Identify unintended system behaviors

 Provide a high-fidelity system safety assessment

 Tools for evaluating nonfunctional requirements

 Perform assessments at appropriate levels of abstraction

The goal for the gun weapon system case study is to test a proposed

modeling tool in order to improve the current state of the SSSTRP evaluation

process.

52

B. DESCRIPTION OF A NAVAL GUN WEAPON SYSTEM

The U.S. Navy gun system diagram used for this research was provided

by the U.S. Navy's Weapons Explosive Review Board (WESERB) as part of the

documentation that accompanies the research in Chapter I. The gun weapon

system contains 17 separate systems, all connected through a single network.

The gun weapon system was modeled using MP event grammar. The modeling

application, herein referred to as "Eagle6," is the product of this research. The

Eagle6 application accepts MP modeling language and gives the user the ability

to write formal queries that return specific sets of scenarios. For the purposes of

defining limitations and definitions of scope, we have defined Scope as the

number of model iterations.

Eagle6 (explained in detail later in this dissertation) uses an exhaustive

and probabilistic approach to generating scenarios, and has the following

capability:

 Eagle6 is based on executable models and is able to generate all

possible scenarios within a given scope.

 Eagle6 provides a high-level abstraction of the interaction between

a software system and its environment.

 Eagle6 supports multiple views of system architecture that are

generated from the same MP model.

 Eagle6 supports random scenario generation for statistical

evaluation.

The following is a description of the systems in the Gun weapon system

model, with the model abbreviation in brackets:

Systems Included in the Gun weapon system Model:

 C&D [CD]-Command and Decision. The software system that

performs all functions within the Aegis combat system

 AN/SPS-67 [R2D]-2-D Surface Search Rotating Radar

53

 AN/SPY-1D [R3D]-3-D Air Defense and Surface Search Phased

Array Radar

 Gun Mount Processor AN/UYK-44 EP/OSM [GMP]-One sub-

element of the GCS, which takes information from the GCC and

provides services to the gun mount

 Gun Console Computer [GCC]-Sub-element of the GCS. It

interfaces with Aegis and other ship sensors and performs fire

control calculations and provides data to the GMP.

 Optical Sight System MK 46 Mod 1-Control Display Console MK

132 Mod 0 [CDC]-The operator console used to control the MK46

Optical Sight

 Optical Sight System MK 46 Mod 1-Electro-Optic Director MK 85

Mod 1 [EOD]-The Optical Sight director system (installed above the

bridge) that rotates and elevates per operator’s commands. The

TV, IR, and laser range finder sensors are installed on the director,

which points them in the right position

 Gun Mount Control Panel MK 437 Mod 1 [GMCP]-Backup

Operator's console installed below the gun mount. It is used in

case the main ADS console in the combat information center goes

down.

 Gun Mount EX 45 Mod 4 [GM]-The 5” gun mount. Holds 20 rounds

in the drum and fires 18-20 rounds per minute.

 AEGIS Display System [System_ADS]-The software that drives all

displays and console operator actions within the ship’s Aegis

combat system (The operator interface software to C&D).

 ACTS [System_ACTS]-Command and Control Backup Module

54

 AEGIS Clock/Gyro Data Converter Cabinets (2)

[System_ACGDCC]-System that provides time and ship’s attitude

information to C&D.

 FODMS [System_FODMS]-Data Multiplexing System.

 Gun Computer System [System_GCS]-System used to perform all

core gun fire control functionality.

 Recorder/Reproducer MK27 Mod 1 [System_Recorder]-Part of the

GCS that is responsible for loading operational program data and

recording GCS data.

 Velocimeter MK 5 Mod 0 [System_Velocimeter]-The sensor (radar)

on the MK 45 Gun Mount that monitors outgoing projectiles after

firing and calculates projectile velocity, used to improve fire control

accuracy.

 Control Panel EP2 MK 281 Mod 9 [System_CP]-The electronic

panel that is used to turn on, set up, load, and locally control the

gun mount. It is separate from the GCS.

55

 Figure 7: From Gun Weapon System MK 34 Mod 1 (From Naval Gunnery Project Office PEO IWS3C)

56

C. IDENTIFICATION OF PROBLEMS FOUND IN THE PRE-
ACQUISITION SOFTWARE SAFETY EVALUATION PROCESS

1. Domain-Specific Issues Covered in This Research

The primary responsibility of the SSSTRP is to identify possible hazard

states when evaluating a proposed gun weapon system change. Our research

showed many areas of the SSSTRP process that warrant attention, but the focus

of our research was narrowed in order to enable us to focus on the following

critical issues:

 Testing domain architecture models for software safety violations–The

goal of this research is to provide a solution that enables the SSSTRP to

automatically generate a number of scenarios that test for software safety

violations.

 Estimation of software performance based on architecture models–The

goal of this research is to create tools that enable the SSSTRP to test

nonfunctional requirements using Formal Methods. The tool answers the

question, “How will the software behave once it is a part of our system?”

2. Domain-specific Issues Not Covered in This Research

 Software inspection techniques

 SSSTRP structure and evaluation methodology

 Vendor Technical Data Package design/structure

 System functionality overlap in Open Architecture (OA)

environments

 Development of more specific and effective guidelines for how to

test safety aspects of COTS software

57

D. OVERVIEW OF THE MONTEREY PHOENIX METHODOLOGY

MP was chosen for this research because it satisfies three primary needs

for this domain:

 MP has the ability to model nonfunctional requirements. Testing

how a system interacts with the environment is a critical need that

has not been available to the SSSTRP.

 MP has the ability to evaluate formal Assertions. Because MP

results are obtained from an exhaustive generation of all scenarios

within scope, determining Hazard States enables the SSSTRP to

evaluate potential system changes with greater effectiveness.

 MP has the ability to extract visual representations of scenarios,

thereby yielding a result that is usable and readable by the layman.

MP Modeling Definitions

MP is used in this domain to create a model with a set of architectural

properties. Attributes are properties of an event that may be used to define

domain model representations. Attributes are valuable as they represent a more

detailed (and measurable) application state. The intention is to model the

concept of an event state associated with the event, thereby enabling the ability

to evaluate the model for predefined unsafe states.

1. MP Scenario (Event Trace)

An Event is defined as any detectible action. A scenario is a set of events

of different types and two sets of relationships between them (IN and

PRECEDES).

A grammar rule has form:

A: right-hand-part, where A is an event type name. Event types that

do not appear in the left hand part of rules are considered atomic.

Events are visualized by small circles, and basic relations by

arrows:

58

Event Relationships IN and PRECEDES

Figure 8: MP Event Trace

MP modeling requires a ROOT event that represents the starting point for

a series of following relational events. In the following examples, R, A, B, C are

events, and the event R is the ROOT event:

 R: {A B C} – Root event R contains UNORDERED events

A, B, and C

 R: (A B C) – Root event R contains ORDERED events A, B,

and C

 R: {* A *} – ROOT event R may have zero or more

UNORDERED events A

 R: (* A *) – ROOT event R contains zero or more ORDERED

events A

 R: [A] – ROOT event R may contain optional event A

 R: (A | B | C) – ROOT event R contains either A or B or C

The following MP construct definitions explain the use of the MP

language:

59

2. Unordered Events: R: {A B C}

Event R contains events A,B,C. Events A,B,C are not ordered (no

precedes relationship between them).

Optional Event Traces for R: {A B C}

Figure 9: MP Unordered Events: R: {A B C}

3. Ordered Events: R: (A B C)

Event R contains events A, B, C. Events A, B, C are ordered: A precedes

B, B precedes C;

Event Traces for R: (A B C)

Figure 10: MP Ordered Events: R: (A B C)

4. Multiple Unordered Events: R: {* A *}

The * is used to allow the modeler to describe an event that happens zero

or more times. Given an expansion scope of n, event R has (n+1) scenarios.

60

Event Traces for R: {* A *}

Figure 11: MP Multiple Unordered Events: R: {* A *}

5. Multiple Ordered Events: R: (* A *)

This sequence denotes a set of zero or more events of type A with an

ordering relation between them. Given an expansion scope of n, event R has

(n+1) scenarios.

Event Traces for R: (* A *)

Figure 12: MP Multiple Ordered Events: R: (* A *)

61

6. Optional Events: R: [A]

This sequence denotes an optional event A. Event R has two scenarios:

one scenario where R is empty, and one scenario where R contains A.

Optional Events for R: [A]

Figure 13: MP Optional Events: R:[A]

7. Alternative Events: R: (A | B | C)

Alternative events are denoted by separating events by using vertical

bars. The following example contains three alternative events, event B, event C,

or event D. Event R has three scenarios. One scenario where R contains A, one

scenario where R contains B, and one scenario where R contains C:

Optional Event Traces for R: (A | B | C)

Figure 14: MP Alternative Events: R: (A | B | C)

62

8. Introduction of SHARE ALL Construct and Constraints

The construct SHARE ALL is used to describe event coordination and

system constraints. The SHARE ALL construct identifies events that can be

shared by other events. The following MP model contains two components

TaskA and TaskB with a connector between them. A Connector enables

components to interact, for example send and receive a message, call each

other and pass a parameter, or use a shared memory to deliver a data item. The

schema Send_Receive_Activity specifies the behavior of components involved in

a single transaction.

SCHEMA Send_Receive_Activity

ROOT TaskA: (Send);
ROOT TaskB: (Receive);
ROOT Connector: (Send Receive);

TaskA, Connector SHARE ALL Send;
TaskB, Connector SHARE ALL Receive;

The rule section introduces Root events TaskA, TaskB, and Connector,

while Send and Receive events are needed to specify the root event’s structure.

The event type stands for a set of event traces satisfying the event structure

defined for that type. The constraints section uses the predicate share all, which

is defined as X, Y are root events, and Z is an event type:

X, Y SHARE ALL Z { v: Z | v IN X} = {w: Z | w IN Y}

Figure 15: Scenario Generated from MP Schema_Send_Receive_Activity

63

The events are represented by rectangles (red rectangles are ROOT

events, and green rectangles are non-ROOT events), and the relationships are

represented by arrows (blue dashed arrows are IN relationships, and black solid

line arrows are PRECEDES relationships).

The example of MP contains:

 TaskA(1), Connector(5), and TaskB(3) are ROOT events

 Send(2) and Receive(4) are non-ROOT events of type

TaskA

 Receive(4) is a shared event of TaskB and Connector(5)

 Send(2) PRECEDES Receive(4)

 Connector(5), TaskB(3) are IN Receive(4)

9. MP Attributes

There are two types of attributes: static and dynamic. Static attributes are

values that are set at the beginning of a model and do not change. Dynamic

attributes have a value that may change in different parts of the scenario. The

Eagle6 prototype uses static attributes that enable query language. Dynamic

attributes are reserved for future research (Auguston & Whitcomb, System

architecture specification based on behavior models, 2010).

10. MP Expansion Scope Construct

Scope is defined as the number of model iterations. The purpose of the

Expansion Scope is to limit the size of the "*" rule in order to better define the

scenario’s parameters. For example, if the test scenario requires the gun

weapon system to fire three rounds, the scenario’s scope is set to “3,” thereby

removing the infinite (“*”) default parameter. In the absence of an Expansion

Scope that is detailed in the model design, setting this value will result in a finite

number of scenarios.

64

MP language by setting an expansion scope each time the “*” rule

is defined as:

 (* <m-n> *)

<n> is considered an abbreviation for <0-n>

 (* <0-n> event *) and { * <0-n> event * }

Becomes

 (* <n> event *) and { * <n> event * }

11. Example MP Model

The following example MP code contains a scenario that contains naval

guns, with each gun firing at a target. The test scenario represented in MP is as

follows:

 A minimum of 1 gun system, and a maximum of two gun systems

 Each weapon can fire zero, one, or two times, maximum.

 The result of the test can be Hit or Miss

SCHEMA: GWS_SSSTRP_Test

ROOT GWS_Cycle_Test: { * <1-2> Gun_System *};

Gun_System: (* <2> Shoot *);

Shoot: (Load Fire (Hit | Miss));

The MP code is described as follows:

MP Code: "ROOT GWS_Cycle_Test: { * <1-2> Gun_System *};

Description: The initiating event (ROOT) is called the GWS_Cycle_Test.

The GWS_Cycle_Test event has 1-2 Gun_System events.

65

MP Code: "Gun_System: (* <0-2> Shoot *);

Description: The Gun_System has zero, one, or two Shoot events.

MP Code: "Shoot: (Load Fire (Hit | Miss));"

Description: The Shoot event has one event that ends in a Hit or Miss

event.

The MP code resulted in a total of 20 possible scenarios, with the scenario

with the least amount of events being 10, and the largest being 19:

66

Figure 16: MP Example: GWS_Cycle_Test Results

67

Figure 17: Scenario Generated from MP Schema: GWS_Cycle_Test #3

68

 Figure 18: Scenario Generated from MP Schema: GWS_Cycle_Test
Scenario #20

12. Small Scope Hypothesis

The gun weapon system model uses event grammar and includes the

ability to execute exhaustive testing for scenario generation within scope

(Auguston, Monterey Phoenix, or How to Make Software Executable, 2009),

(Andoni, Daniliuc, Sarfraz, & Marinov, 2002). Our hypothesis of finding unsafe

system states using a small scope size is based on Jackson’s Small Scope

Hypothesis. “Small Scope Hypothesis” (Jackson, Software abstractions: logic,

language, and analysis, 2006) (Jackson & Damon, Elements of style: Analyzing a

software design feature with a counter example detector, 1996) argues that a

high proportion of bugs can be found by testing the system within a small scope

of test cycles. The ability to introduce environmental events such as missiles,

power outages, and system failure in small scope testing

69

(Auguston, Software architecture built from behavior models, 2009) showed that

MP is able to introduce critical environmental events that have a high probability

of rendering the gun system unsafe.

Figure 19: Jackson's Small Scope Hypothesis (After Jackson, Software
abstractions: logic, language, and analysis, 2006)

Jackson's Small Scope Hypothesis that most errors can be demonstrated

on small counter examples is demonstrated in Eagle6. Eagle6 has two primary

means for evaluating software safety using relatively small scope sizes:

Exhaustive Search – Exhaustive search is the process of generating all

possible scenarios from the MP model up to a given scope, and querying the

result set. The Exhaustive Search enables the user to find scenarios that

produce counter-examples of assertions.

Random Approach – Random approach is designed to generate random

scenarios within scope to calculate statistical estimates. The purpose of this

functionality is to create estimates that are used for software safety assessments.

Summary: Jackson’s Small Scope Hypothesis graph represents the idea

that an exhaustive test within a small scope is much better than an unstructured

test with arbitrary test parameters.

70

13. Use Case Representation in MP

The following demonstration includes a simple gun weapon system use

case and the corresponding MP model. The purpose of the demonstration is to

show that MP has the capability to extract use cases from an MP model, thereby

creating the capacity for formal testing.

Figure 20: Gun weapon system Fire Use Case Diagram in UML Notation

UML Actors:

 Gun Console Computer [GCC] - Sub-element of the GCS. It

interfaces with Aegis and other ship sensors and performs fire

control calculations and provides data to the GMP.

 Radar System [R3D] - 3D Air Defense and Surface Search Phased

Array Radar

71

 Gun Mount Control Panel [GMCP] - Backup Operator's console

installed below the gun mount. It is used in case the main ADS

console in the combat information center goes down.

 Gun Mount Processor [GMP] - One sub-element of the GCS, which

takes information from the GCC and provides services to the gun

mount

Use Cases:

 Radar Get Target Position - Uses the Radar information to get the

target position.

 Radar Assign Target - Uses information from the Radar and Gun

Console Computer to assign the target.

 Get Ship Altitude - Calculates the ship's current altitude.

 Get Ship Speed - Calculates the ship's current speed.

 Aim Target - Uses the information from the Gun Mount Control

Panel Actor and Gun Console Computer Actor, as well as the Get

Ship Altitude and Get Ship Speed Use Cases to set the gun aiming

function.

 Fire At Target - Uses information from Gun Mount Processor and

Gun Console Computer to execute a fire command.

14. Use Case MP Model

ROOT GunConsoleComputer_activity: {

 RadarAssignTarget

 AimTarget

 FireAtTarget

};

72

ROOT RadarSystem_activity: {

 RadarAssignTarget

};

RadarAssignTarget: {

 RadarGetTargetPosition

};

ROOT GunMountControlPanel_activity: {

 AimTarget

 FireAtTarget

};

AimTarget: {

 GetShipAltitude

 GetShipSpeed

};

ROOT GunMount_activity: {

 FireAtTarget

};

GunConsoleComputer_activity, GunMount_activity SHARE ALL

FireAtTarget;

GunConsoleComputer_activity, RadarSystem_activity SHARE ALL

RadarAssignTarget;

GunConsoleComputer_activity, GunMountControlPanel_activity SHARE

ALL AimTarget, FireAtTarget;

73

The following figure represents a scenario generated from the MP model:

Figure 21: Example of Use Case Modeling via MP

In UML, Uses Case designs may contain conditional nodes. Use Case

views generated by MP are single views of Use Case scenarios which clarify

potential system behavior.

15. Evaluation of MP

MP has several features that apply to the gun weapon system software

safety domain:

 MP provides a high level of abstraction–The MP modeling

methodology has the capability to model system behavior at the

abstract level without any detailed information about the specific

system (Rivera, 2010). This attribute allows for testing and

debugging earlier in the acquisition life cycle, as there is no need to

continue the acquisition process if safety-related issues are found

during the initial stages of evaluation.

 MP supports continuous refinement–The ability to insert an event

such as a missile strike, power outage, or any other environmental

event is critical for testing a potential system change. Systems

work well in the lab. MP allows for the ability to test using an

environment model. The ability to bring together the environment

and the system in the same model is a new development. MP

74

allows for this new capability (Auguston & Whitcomb, System

architecture specification based on behavior models, 2010).

 The MP framework provides high-level abstractions that may be

used to analyze system behavior by checking assertions (Rivera,

2010). Having the ability to quickly test a potential system change

without needing specific system details streamlines the acquisition

process while increasing the fidelity of the evaluation process.

 The Use Case example demonstrates that MP supports the ability

to generate and extract different views from an MP model. The

ability to provide stakeholders graphical representations of potential

scenarios that may end in a hazard state is necessary.

Additionally, because MP supports formal methods, testing using

assertions has a high level of fidelity, given that the model does an

exhaustive search for all counter-assertions within scope.

MP provides the means to describe environmental behavior, which is why

it was chosen as the modeling tool of choice for the “Eagle6 Prototype Software

Architecture Modeling Software,” which is described later in this dissertation.

E. PROTOTYPE NAVAL GUN WEAPON SYSTEM MODEL

The gun weapon system model found in Appendix A is a model written

entirely in MP. It utilizes attributes in order to enable the evaluation of system

properties.

1. The Purpose of the Naval Gun Weapon System Model

The design of the gun weapon system model is meant to satisfy the

following two requirements:

 Assertion-checking via an exhaustive generation of scenarios within

scope.

 Defining model properties in order to determine the probability of a

particular scenario.

75

2. Introduction to the Model

The gun weapon system model found in Appendix A is comprised of all

system components identified in Chapter III.A, "Description of Naval Gun weapon

system." The model event begins with the R2D Radar identifying a target, and

ends with a Gun Console Computer Open Fire command.

3. Gun Weapon System Model Properties

 Each system in the model has a root event that describes the

system activity. The following is a list of systems used in the gun weapon system

model, with a list of included events that make up the ROOT activity. Also

included in each section are the test results for Scope, Total Scenarios, and the

Total Processing Time.

Scenario Generation Result Definitions:

 Scope – Total scenarios generated from Eagle6

 Total Scenarios – The total number of possible scenarios within the

model scope.

Processing Time – The amount of time it took for Eagle6 to generate an

exhaustive search for all possible scenarios within scope.

ROOT R2D_activity - the activity of AN/SPS-67 [R2D] - 2-D Surface Search
Rotating Radar

 R2D_displayNewTarget - R2D displays a new target on the screen

MP Model:
ROOT R2D_activity: {*
 R2D_displayNewTarget // R2D displays a new target on the screen

*};
Note: The notation represents unordered events that may happen
simultaneously.

Model Results:

Scope: 1
Total Scenarios: 2

 Processing Time: 0.01 Seconds

76

Figure 22: Scenario Generated from MP Schema: Gun weapon system Model
R2D_activity

ROOT CD_activity - the activity of C&D [CD] - Command and Decision.

The software system that performs all functions within the Aegis combat system

 CD_spotNewTarget - CD spots a new target on R2D screen

 CD_ignoreTarget - CD ignores target

 CD_request_GCC_setTarget - CD requests GCC to set target (requires

more information about the target)

 CD_wait_GCC_setTarget - CD waits for GCC to set target

 CD_targetLost - CD loses target

 CD_followTarget - CD follows target movements and waits to see what

happens

 CD_request_GCC_openFire - CD requests GCC to open fire at target

 CD_wait_GCC_openFire - CD waits for GCC to open fire

MP Model

ROOT CD_activity: {* CD_spotNewTarget *};

CD_spotNewTarget: (// CD spots a new target and waits for R2D

R2D_displayNewTarget // R2D displays a new target

(CD_ignoreTarget // CD ignores target

| (CD_request_GCC_setTarget //Requests GCC to set target

77

 CD_wait_GCC_setTarget // CD waits for GCC to set target

((GCC_targetNotSet // GCC fails to set target

CD_targetLost) |

(GCC_targetSet // GCC sets the target and returns target info

CD_followTarget // CD follows target and waits

(CD_ignoreTarget // CD ignores target

| (CD_request_GCC_openFire // CD requests GCC to open fire

CD_wait_GCC_openFire // CD waits for GCC to open fire

(GCC_openFireFailed // GCC failed to open fire

| targetMissed // target is missed

| targetHit))))))))); //target is hit

//___

R2D_activity, CD_activity SHARE ALL R2D_displayNewTarget;

//___

Model Results:

Scope: 1

Total Scenarios: 7

Processing Time: 0.01 Seconds

78

Figure 23: Scenario Generated from MP Schema: CD_activity Scenario #7

ROOT GCC_activity - The activity of Gun Console Computer [GCC]-Sub-

element of the GCS. It interfaces with Aegis and other ship sensors and

performs fire control calculations and provides data to the GMP

 GCC_setTarget - GCC sets a target (waits for CD to request

setTarget and returns target information)

o GCC_targetNotSet - GCC fails to work

o GCC_request_R3D_setTarget - GCC requests R3D to set

target (requires more information about the target)

79

o GCC_wait_R3D_setTarget - GCC waits for R3D to set

target

o GCC_targetSet - GCC sets the target and returns target info

to R3D

 GCC_openFire - GCC open fires on target (waits for CD to request

openFire and opens fire)

o GCC_openFireFailed - GCC is not working and it fails to

open fire

o GCC_request_GMP_openFire - GCC requests GMP to

open fire

o GCC_wait_GMP_openFire - GCC waits for GMP to open

fire

Model Results:

Scope: 2

Total Scenarios: 157

Processing Time: 1.15 Seconds

80

Figure 24: Scenario Generated from MP Schema: GCC_activity Scenario #13

ROOT GMP_activity - the activity of Gun Mount Processor AN/UYK-44

EP/OSM [GMP]-One sub-element of the GCS, which takes information from the

GCC and provides services to the gun mount.

o GMP_answerRequest_GCC_openFire - GMP answers request

from GCC to open fire (waits for GCC to request openFire and

requests the same to GMCP)

o GMP_openFireFailed - GMP is not working and it fails to

open fire

o GMP_answerRequest_GMCP_ossData - GMP answers a

request from GMCP for optical sight target data (it waits for a

request and it sends data)

 GMP_request_CDC_ossData - GMP requests CDC

oss data

81

 GMP_wait_CDC_ossData - GMP waits for CDC oss

data

 GMP_failReceiving_CDC_ossData - GMP does not

receive oss data from CDC

 GMP_receive_CDC_ossData - GMP receives oss

data from CDC

Model Results:

Scope: 3

Total Scenarios: 1885

Processing Time: 2.14 Seconds

82

Figure 25: Scenario Generated from MP Schema: GMP_activity Scenario #96

83

ROOT CDC_activity - the activity of Optical Sight System MK 46 Mod 1-

Control Display Console MK 132 Mod 0 [CDC]-The operator console used to

control the MK46 Optical Sight

 CDC_answerRequest_GMP_ossData - CDC answers the request

from GMP for oss data (waits for GMP to request oss data and

provides it)

o CDC_request_EOD_ossData - CDC request EOD oss data

(thermal and daylight)

o CDC_wait_EOD_ossData - CDC waits for oss data from EOD

o CDC_failReceiving_EOD_ossData - CDC does not receive

oss data from EOD

o CDC_receive_EOD_ossData - CDC receives oss data from

EOD

ROOT CDC_activity Model Results:

Scope: 4

Total Scenarios: 121

Processing Time: 0.08 Seconds

84

Figure 26: Scenario Generated from MP Schema: CDC_activity Scenario #85

85

ROOT EOD_activity-the activity of Optical Sight System MK 46 Mod 1-

Electro-Optic Director MK 85 Mod 1 [EOD]-The Optical Sight director system

(installed above the bridge) that rotates and elevates per operator’s commands.

The TV, IR, and laser rangefinder sensors are installed on the director, which

points them in the right position

 EOD_answerRequest_CDC_ossData - EOD answers the request

from CDC of oss data (waits for CDC to request oss data and

provides it)

o EOD_requestDaylightSensorData - EOD requests data

from daylight sensor

o EOD_failGettingDaylightSensorData - EOD fails to get

data from daylight sensor

o EOD_receiveDaylightSensorData - EOD receives data

from daylight sensor

o EOD_requestThermalSensorData - EOD requests data

from thermal sensor

o EOD_failGettingThermalSensorData - EOD fails to get

data from thermal sensor

o EOD_receiveThermalSensorData - EOD receives data

from thermal sensor

ROOT EOD_activity Model Results:

Scope: 5

Total Scenarios: 1365

Processing Time: 1.91 Seconds

86

Figure 27: Scenario Generated from MP Schema: EOD_activity Scenario #13

ROOT GMCP_activity-the activity of Gun Mount Control Panel MK 437

Mod 1 [GMCP]-Backup Operator's console installed below the gun mount. It is

used in case the main ADS console in the combat information center goes down

o GMCP_answerFireRequest - GMCP answers a fire request when

displayed on screen (waits for a fire request to be displayed on the

screen and it starts fire procedures)

o GMCP_displayOpenFireRequest - GMCP displays an

open fire request on screen

o GMCP_openFireFailed - GMCP fails to open fire

87

o GMCP_request_GMP_ossData - GMCP requests optical

sight system target data from GMP

o GMCP_wait_GMP_ossData - GMCP waits for optical sight

system data from GMP

o GMCP_failReceiving_GMP_ossData - GMCP does not

receive oss target data from GMP

o GMCP_receive_GMP_ossData - GMCP receives optical

sight system data

o GMCP_send_GM_openFireCommand - GMCP sends GM

an open fire command

o GMCP_wait_GM_openFireCommand - GMCP waits for

GM to open fire

ROOT GMCP_activity Model Results:

Scope: 5

Total Scenarios: 1365

Processing Time: 1.91 Seconds

88

Figure 28: Scenario Generated from MP Schema: GMCP_activity Scenario #27

89

ROOT GM_activity-the activity of Gun Mount EX 45 Mod 4 [GM]-The 5”

gun mount. Holds 20 rounds in the drum and fires 18-20 rounds per minute.

o GM_answer_GMCP_openFireCommand - waits for GMCP to send

an open fire command and it opens fire

o GM_launchMissile - GM launches a missile

o GM_waitForMissileToHit - GM waits for the missile to hit

the enemy target

o targetHit - target is hit

o targetMissed - target is missed

ROOT GM_activity Model Results:

Scope: 9

Total Scenarios: 1023

Processing Time: 1.97 Seconds

90

Figure 29: Scenario Generated from MP Schema: GM_activity Scenario #29

91

ROOT R3D_activity-the activity of AN/SPY-1D [R3D]-3-D Air Defense

and Surface Search Phased Array Radar

o R3D_setTarget - R3D sets target on radar (it waits for GCC to

request and returns additional information about target)

o R3D_targetNotSet - R3D manages to set target

o R3D_targetSet - R3D fails to set target

Code:

ROOT R3D_activity: {*R3D_setTarget*}; // R3D sets a target

R3D_targetNotSet, R3D_targetSet;

R3D_setTarget: (// R3D sets target and waits

GCC_request_R3D_setTarget // waits for GCC response

 (R3D_targetNotSet // R3D manages to set target

 | R3D_targetSet));// R3D fails to set target

R3D_activity, GCC_activity SHARE ALL GCC_request_R3D_setTarget,

ROOT R3D_activity Model Results:

Scope: 9

Total Scenarios: 1023

Processing Time: 9.57 Seconds

92

Figure 30: Scenario Generated from MP Schema: R3D_activity Scenario #53

93

a. Explanation of Event Attributes

There are two types of attributes: static and dynamic. Static

attributes are values that are set at the beginning of a model and do not change.

Dynamic attributes have a value that may change in different parts of the

scenario. The Eagle6 prototype uses static attributes that enable query

language. Dynamic attributes are reserved for future research. For more details

on Dynamic attributes, see (Auguston & Whitcomb, System architecture

specification based on behavior models, 2010).

 Environmental Behavior

 Events and schemas are used to model environmental

behavior in the same way we model system behavior. Attributes are properties

of events. For example, the following attribute

"Req_Num_Man_Approv_For_Cmd" is used to measure the total number of

manual approvals required to execute an event. The environmental behavior is

the manual approval, such that the system and the environment both share the

event. The following attributes are used within the gun weapon system model:

 Max_Watts - A numeric value of the amount of Watts required to

execute the event. The default value is 0.

 Network_Bandwidth_Req_MB - Amount of network bandwidth

required to transmit the event response. The measurement for this

attribute is MB, and the default value is 0.

 Total_Processing_Time_Sec - Total time required for the event to

elapse. The measurement for this attribute is seconds, and the

default value is 0.

 Req_Num_Man_Approv_For_Cmd - Total number of manual

approvals required to execute an event. This attribute is used to

94

find scenarios where the number of manual approvals required to

process an OpenFire command exceeds the acceptable limit. The

default value is zero.

95

Table 6: Gun Weapon System Model Events and Attributes

R2D_displayNewTarget: <Max_Watts=90, Network_Bandwidth_Req_MB=1.5, Total_Processing_Time_Sec=1.5,
Req_Num_Man_Approv_For_Cmd=1> ;
CD_request_GCC_setTarget: <Max_Watts=120, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=1> ;
CD_wait_GCC_setTarget: <Max_Watts=10, Network_Bandwidth_Req_MB=0.1, Req_Num_Man_Approv_For_Cmd=1>;
GCC_request_R3D_setTarget: <Max_Watts=100, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=1> ;
GCC_wait_R3D_setTarget: <Max_Watts=8, Network_Bandwidth_Req_MB=0.1, Req_Num_Man_Approv_For_Cmd=1>;
R3D_targetSet: <Max_Watts=120, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=2.0, Req_Num_Man_Approv_For_Cmd=1> ;
GCC_targetSet: <Max_Watts=120, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=2.0, Req_Num_Man_Approv_For_Cmd=1> ;
CD_followTarget: <Max_Watts=160, Network_Bandwidth_Req_MB=4.0, Total_Processing_Time_Sec=0.5, Req_Num_Man_Approv_For_Cmd=1>
;
CD_request_GCC_openFire: <Max_Watts=60, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=0.5,
Req_Num_Man_Approv_For_Cmd=2> ;
CD_wait_GCC_openFire: <Max_Watts=5, Network_Bandwidth_Req_MB=0.2, Req_Num_Man_Approv_For_Cmd=2>;
GCC_request_GMP_openFire: <Max_Watts=60, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=0.5,
Req_Num_Man_Approv_For_Cmd=2> ;
GCC_wait_GMP_openFire: <Max_Watts=5, Network_Bandwidth_Req_MB=0.3, Req_Num_Man_Approv_For_Cmd=2>;
GMCP_displayOpenFireRequest: <Max_Watts=140, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=0> ;
GMCP_request_GMP_ossData: <Max_Watts=100, Network_Bandwidth_Req_MB=2.5, Total_Processing_Time_Sec=2.0,
Req_Num_Man_Approv_For_Cmd=1> ;
GMP_request_CDC_ossData: <Max_Watts=100, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=1.5,
Req_Num_Man_Approv_For_Cmd=1> ;
GMP_wait_CDC_ossData: <Max_Watts=50, Network_Bandwidth_Req_MB=0.5, Req_Num_Man_Approv_For_Cmd=1>;
CDC_request_EOD_ossData: <Max_Watts=110, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=1.5,
Req_Num_Man_Approv_For_Cmd=1> ;
CDC_wait_EOD_ossData: <Max_Watts=100, Network_Bandwidth_Req_MB=1, Req_Num_Man_Approv_For_Cmd=1>;
EOD_requestDaylightSensorData: <Max_Watts=80, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=1> ;
EOD_receiveDaylightSensorData: <Max_Watts=120, Network_Bandwidth_Req_MB=3.0, Total_Processing_Time_Sec=2.5,
Req_Num_Man_Approv_For_Cmd=1> ;

96

EOD_requestThermalSensorData: <Max_Watts=80, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=1> ;
EOD_receiveThermalSensorData: <Max_Watts=120, Network_Bandwidth_Req_MB=3.0, Total_Processing_Time_Sec=2.5,
Req_Num_Man_Approv_For_Cmd=1> ;
CDC_receive_EOD_ossData: <Max_Watts=150, Network_Bandwidth_Req_MB=3.5, Total_Processing_Time_Sec=3.0,
Req_Num_Man_Approv_For_Cmd=1> ;
GMP_receive_CDC_ossData: <Max_Watts=120, Network_Bandwidth_Req_MB=2.5, Total_Processing_Time_Sec=2.0,
Req_Num_Man_Approv_For_Cmd=1> ;
GMCP_receive_GMP_ossData: <Max_Watts=120, Network_Bandwidth_Req_MB=2.5, Total_Processing_Time_Sec=1.5,
Req_Num_Man_Approv_For_Cmd=1> ;
GMCP_wait_GMP_ossData: <Max_Watts=10, Network_Bandwidth_Req_MB=0.5, Req_Num_Man_Approv_For_Cmd=1>;
GMCP_send_GM_openFireCommand: <Max_Watts=100, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=2> ;
GMCP_wait_GM_openFireCommand: <Max_Watts=10, Network_Bandwidth_Req_MB=0.5, Req_Num_Man_Approv_For_Cmd=2>;
GM_launchMissile: <Max_Watts=250, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=2.5,
Req_Num_Man_Approv_For_Cmd=2> ;
GM_waitForMissileToHit: <Max_Watts=50, Network_Bandwidth_Req_MB=0.5, Total_Processing_Time_Sec=0.5,
Req_Num_Man_Approv_For_Cmd=0> ;

97

4. Testing Architectural Design Via Formal Queries

Identifying unintended system behavior is paramount when executing a

software system safety assessment.

The concept “Chain” is defined as a set of events with the property that

any two events from the chain (x and y) have a PRECEDES relationship between

them (either x PRECEDES y, or y PRECEDES x). The set that contains all

Chains of scenario s is described as Chain(s). Given a scenario s, we define A

as a chain of s as:

The formal design of these models creates a framework for system

behavior properties to be expressed as computations over event traces. Eagle6

uses the MP framework and therefore supports extracting different views from

the model, and verification of behavior properties within a given scope.

Advantages of this approach compared with the common simulation tools are as

follows:

 Means to write assertions about the system behavior and tools to verify

those assertions.

 Exhaustive search through all possible scenarios (up to the scope limit).

 The support for verifiable refinement of the architecture model, up to

design and implementation models.

 Integration of the architecture models with environment models for

defining typical scenarios (use cases) and verifying system’s behavior for

those scenarios.

The application of the gun weapon system model has the following two

major functions: (1) testing the gun weapon system architectural design; and (2)

generating random scenarios according to predefined probabilities with the

purpose of getting different types of estimates.

98

a. Testing Architectural Design Via Formal Queries

The result of executing an MP model is a set of valid event traces

(scenarios):

Figure 31: MP Model Scenario Generation Process

The following query language represents how the user obtains a

set of scenarios by constructing dynamic queries via the Eagle6 user interface:

Figure 32: Query Building Process

Eagle6 has a graphical interface that enables the user to create

queries. The graphical interface has three types of queries available in

parameterized form as macro commands that can be used individually, or

combined for a more refined ResultSet:

b. Macro Commands

Query type 1: EventCount

EventCount is used to return only scenarios that have a min/max

number of total events within the scenario. The EventCount Macro Command

has the following structure:

99

EventCount(EventType, Operator, Value)

Parameters required:

 EventType – a valid event type from the MP model

 Operator – one of the following:

 Value – numerical value

Notation:

Example:

The following macro command returns all scenarios that have > 1

events of type GCC_openFireFailed:

ResultSet = EventCount(GCC_openFireFailed, >=, 1)

Query type 2: SliceSum

SliceSum is used to return only scenarios that have a min/max

number of total events that happen in parallel within the scenario. The SliceSum

Macro Command has the following structure:

SliceSum(AttributeName, Operator, Value)

Parameters required:

 AttributeName – a valid attribute name from the MP model

 Operator – one of the following: <, <=, =, >, >=

 Value – numerical value

Notation:

100

Example:

The following query returns all scenarios that have at least one

Slice of events where the attribute MaxWatts aggregate sum > 220:

SliceSum(MaxWatts, >=, 220)

Query type 3: ChainSum

ChainSum is used to return only scenarios with events that happen

in sequence and also have attribute properties that meet the query definition.

The ChainSum Macro Command has the following structure:

ChainSum(AttributeName, Operator, Value)

Parameters required:

 AttributeName – a valid attribute name from the MP model

 Operator – one of the following:

 Value – numerical value

 Sum - the total sum of the Attribute values found in the

ResultSet

Notation:

Example:

The following query returns all scenarios that have at least one

chain of events that has an aggregate sum of the attribute

Total_Processing_Time_Sec that is >= five:

101

ChainSum(Total_Processing_Time_Sec, >=, 5)

Query type 4: Combined Query

 The Eagle6 interface has the ability to create combined queries.

The ResultSet is generated from a combination of the predefined macro

commands 1-3:

ResultSet = MacroCommand1 ∩ MacroCommand2

The intersection of sets MacroCommand1 and MacroCommand2 is

the set of all elements of MacroCommand1 which are also elements of

MacroCommand2.

Example:

The example represents a query that combines the Queries 1-3,

and returns scenarios that meet the all of the queries' criteria:

Minimum of one scenario where the GCC_openFireFailed event

Count >= 1 AND a minimum of one scenario where parallel events that have the

attribute MaxWatts have an aggregate sum >=220.

ResultSet = {(EventCount(GCC_openFireFailed, >=, 1)) ∩

 (SliceSum(MaxWatts, >=, 220))}

F. IDENTIFYING POTENTIAL SOFTWARE SAFETY HAZARD STATES

When modeling the naval gun weapon system (Appendix A), we use both

exhaustive and random scenario generation to evaluate software safety.

Appendix B contains the Gun weapon system Assertion Library. The Exhaustive

Search is the process of generating all possible scenarios from the MP model up

to a given scope. The exhaustive search enables the user to find scenarios that

produce counter-examples of assertions. The Random Approach is used to

102

generate estimates that are used for software safety assessment. Eagle6

generates random scenarios within scope to calculate statistical estimates.

Exhaustive Search

The exhaustive search method enables the user to input query criteria that

customizes the result set returned by the software. Limiting result sets to

important scenarios enables users to see only the data in which they are

interested.

1. Modeling Demonstration: QUERY GWSMaxWatts

Hazard State: Find scenarios where the gun weapon system may require

more Watts than the gun weapon system can produce.

Test Definition: Return all scenarios within scope that have at least one

Slice that contains events that have the attribute MaxWatts, and the sum of the

attribute MaxWatts is >= 220.

Macro Command:

ResultSet = SliceSum(MaxWatts, >=, 220)

103

Figure 33: QUERY GWSMaxWatts - Scenario Query

Figure 34: QUERY GWSMaxWatts - Results

The graphic contains the following information:

o Graphic Display - A hyperlink that is programmed to display the

graphical image of the scenario in a new browser.

104

o Total Event Count - The total number of events that are included in

the scenario.

o SliceSum(Max_Watts) for parallel events - The column is used to

display scenario details that evaluate attributes. The "Show

Details" button displays the individual events and their

corresponding attribute values. The background color orange is

used to alert the user that one or more events do not have an

attribute value assigned. The textual output value for attribute

values that are null is empty. The color green is used to alert the

user that all events have assigned attribute values.

105

Figure 35: Scenario Generated from QUERY GWSMaxWatts - Graphical
Display

106

The following graph represents a close-up view of the events that are

identified in the SliceSum Query:

Figure 36: Scenario Generated from QUERY GWSMaxWatts - Zoom Slice
View

107

Summary: The Software Safety Hazard State description ““Find scenarios

where the gun weapon system may require more power than the gun weapon

system can produce”” resulted in the test scenario containing the Macro Query

SliceSum(MaxWatts, >=, 220). The query demonstration showed the query

returned five possible scenarios where the gun weapon system could result in a

Hazard State. The following is a list of events contained in the slice (that

satisfied the query) from the scenario:

The slice from the scenario contains the following events:

Events (Sum of MaxWatts = 290)

 CD_wait_GCC_openFire(10).MaxWatts =5

 GCC_wait_GMP_openFire(22).MaxWatts =5

 GMCP_wait_GMP_ossData(29).MaxWatts =10

 GMP_wait_CDC_ossData(36).MaxWatts =50

 CDC_wait_EOD_ossData(41).MaxWatts =100

 EOD_receiveDaylightSensorData(46).MaxWatts =120

2. Modeling Demonstration: QUERY Network_Capacity_Check

Hazard State: Find scenarios where the gun weapon system may require

more network bandwidth than the gun weapon system network can provide.

Test Description: Find a set of scenarios that have at least one slice with

the following property: the sum of the attribute Max_Network_Bandwidth for all

events that belong to that slice must be >= five .

Macro Command:

SliceSum(Max_Network_Bandwidth, >=, 5)

108

Figure 37: QUERY Network_Capacity_Check - Scenario Query

Figure 38: QUERY Network_Capacity_Check - Results

109

Figure 39: Scenario Generated from QUERY Network_Capacity_Check -
Graphical Display

110

Summary: The Software Safety Hazard State description “Find scenarios

where the gun weapon system may require more network bandwidth than the

gun weapon system network can provide” resulted in the test scenario containing

the Macro Query SliceSum(Max_Network_Bandwidth, >=, 5). The query

demonstration showed the query returned four possible scenarios where the gun

weapon system network could result in a Hazard State. The following is a list of

events contained in the slice (that satisfied the query) from the scenario:

Events (Sum of Max_Network_Bandwidth_MB: 5.5)

 CD_wait_GCC_openFire(10).Max_Network_Bandwidth_MB =0.2

 GCC_wait_GMP_openFire(22).Max_Network_Bandwidth_MB =0.3

 GMCP_wait_GMP_ossData(31).Max_Network_Bandwidth_MB

=0.5

 GMP_wait_CDC_ossData(39).Max_Network_Bandwidth_MB =0.5

 CDC_wait_EOD_ossData(44).Max_Network_Bandwidth_MB =1

 EOD_receiveDaylightSensorData(49).Max_Network_Bandwidth_M

B =3

3. Model Demonstration: QUERY GCC_OpenFireFail

Hazard State: Find scenarios where the gun weapon system may

experience the failure of a Gun Control Center Open Fire Command.

Test Definition: Find a set of possible hazard state scenarios where the

CGG_openFire event happens at least once.

Macro Command:

ResultSet = EventCount(GCC_openFireFailed, >=, 1)

111

Figure 40: QUERY GCC_OpenFireFail - Scenario Query

Figure 41: QUERY GCC_OpenFireFail - Results

112

Figure 42: Scenario Generated from QUERY GCC_OpenFireFail - Graphical

Display

Summary: The Software Safety Hazard State description “Find scenarios

where the gun weapon system may experience the failure of a Gun Control

Center Open Fire Command” resulted in the test scenario containing the Macro

Query EventCount(GCC_openFireFailed, >=, 1). The query demonstration

showed the query returned nine possible scenarios where the gun weapon

system could result in a Hazard State.

113

4. Model Demonstration: QUERY Max_Manual_Approvals

Hazard State: Find scenarios where gun weapon system design may

result in the gun weapon system requiring >= three manual approvals to execute

an Open Fire Command.

Test Description: Find a set of scenarios that contain at least one

GCC_openFire event, and also have at least one slice of events that have the

Attribute Req_Num_Man_Approv_For_Cmd with a sum that is >= 3.

Macro Command:

ResultSet = {(EventCount(GCC_openFire, >=, 1))

(ChainSum(Req_Num_Man_Approv_For_Cmd,>=, 3))};

Figure 43: QUERY Max_Manual_Approvals - Scenario Query

114

Figure 44: QUERY Max_Manual_Approvals - Results

115

Figure 45: Scenario Generated from QUERY Max_Manual_Approvals -
Graphical Display

Summary:

The Software Safety Hazard State description “Find scenarios where gun

weapon system design may result in the gun weapon system requiring >= three

manual approvals to execute an Open Fire Command” resulted in the test

scenario containing the Macro Query:

{(EventCount(GCC_openFire, >=, 1))

(ChainSum(Req_Num_Man_Approv_For_Cmd,>=, 3))}.

116

The query demonstration showed the query returned ten possible

scenarios where the gun weapon system could result in a Hazard State. The

following is a list of events contained in the slice (that satisfied the query) from

the scenario:

Events (Sum of Req_Num_Man_Approv_For_Cmd: 8)

 CD_wait_GCC_openFire(10).Req_Num_Man_Approv_For_Cmd =2

 GCC_wait_GMP_openFire(22).Req_Num_Man_Approv_For_Cmd

=2

 GMCP_wait_GM_openFireCommand(32).Req_Num_Man_Approv_

For_Cmd =2

 GM_launchMissile(51).Req_Num_Man_Approv_For_Cmd =2

5. Model Demonstration: QUERY GCC_ OpenFireFailed

Hazard State: Find scenarios where Gun Console Computer tries to

execute an Open Fire Command and it ends with a system timeout.

Description: Find a set of scenarios that contain the GCC_openFire

event, and also have at least one chain of events with a sum of the attribute

Total_Processing_Time_Sec that is >= five .

Macro Command:

ResultSet = {(EventCount(GCC_openFire, >=, 1))

(ChainSum(Total_Processing_Time_Sec,>=, 5))};

117

Figure 46: GCC_ OpenFire Total Processing Time - Scenario Query

118

Figure 47: GCC_OpenFire Total Processing - Results

119

Figure 48: GCC_OpenFire Total Processing - Graphical Display

Summary: The Software Safety Hazard State description “Find scenarios

where Gun Console Computer tries to execute an Open Fire Command and it

ends with a system timeout” resulted in the test scenario containing the Macro

Query:

{(EventCount(GCC_openFire, >=,))

(ChainSum(Total_Processing_Time_Sec,>=, 5))};

The query demonstration showed the query returned 11 possible

scenarios where the gun weapon system could result in a Hazard State. The

following is a list of events contained in the slice (that satisfied the query) from

the scenario:

120

Events (SUM of Total_Processing_Time_Sec: 8.5 Seconds)

 R2D_displayNewTarget(2).Total_Processing_Time_Sec =1.5

 CD_request_GCC_setTarget(5).Total_Processing_Time_Sec =1

 GCC_targetSet(7).Total_Processing_Time_Sec =2

 CD_followTarget(8).Total_Processing_Time_Sec =0.5

 CD_request_GCC_openFire(9).Total_Processing_Time_Sec =0.5

 CD_wait_GCC_openFire(10).Total_Processing_Time_Sec =

Attribute Value Not Assigned

 GCC_openFireFailed(11).Total_Processing_Time_Sec = Attribute

Value Not Assigned

 GCC_request_R3D_setTarget(14).Total_Processing_Time_Sec =1

 GCC_wait_R3D_setTarget(15).Total_Processing_Time_Sec =

Attribute Value Not Assigned

 R3D_targetSet(16).Total_Processing_Time_Sec =2

G. USING PROBABILITIES TO REFINE SYSTEM BEHAVIOR IN MP

Inserting event probabilities is designed to give the modeler a more

refined capability of modeling actual system behavior. Introducing event

probabilities may be used to estimate the probability of a Hazard State, as well

as the probability of an Software Safety assertion.

Eagle6 uses the Monte Carlo method of approximating an expectation by

the sample mean of a function of simulated random variables within the model

scope

The following iterative scenario generation process, and random scenario

generation process require a larger scope in order to generate statistical results

that represent actual system behavior:

121

 Iterative Scenario Generation - A process that uses the Markov

Chain theory such that the ResultSet consists of a finite number of

states (scope) and some known probabilities p, where pij is the

probability of moving from state i to state j. This approach enables

the user to generate scenarios that produce counter-examples of

assertions, as well as the probabilities of those assertions.

 Random Scenario Generation - Generates random scenarios within

scope to calculate statistical estimates. The purpose of this

functionality is to create estimates that are used for software safety

assessments.

To determine probabilities of a scenario, event attributes are assigned a

probability value:

 (* <0-n/a0,a1,a2,a3 ... an> Radar_Target_Identified *)

The notation represents an a0 probability that Radar_Target_Identified

appears zero times, an a1 probability that Radar_Target_Identified appears one

time ... an an probability that Radar_Target_Identified appears n times.

Given a specified range for scope, the typical expression:

(* <n1-n2> Radar_Target_Identified *)

Becomes:

(* <n1-n2/a0,a1,a2,a3 ... an2-n1> Radar_Target_Identified *)

There is an a0 probability that Radar_Target_Identified appears n1 times,

an a1 probability that Radar_Target_Identified appears (n1+1) times... an an2-n1

probability that Radar_Target_Identified appears n2 times.

122

Eagle6 Exhaustive Scenario Generation

The following graphic represents the Eagle6 exhaustive scenario

generation user interface options page. The options page has the ability to refine

the application output by setting parameters for three general options:

Figure 49: Exhaustive Scenario Generation Options

The following model demonstrates how to set the probability of an event.

In the following test, it was determined that the event Radar_Target_Identified

had two possible outcomes: Enemy_Target and Friendly_Target. To better

model the operational environment, the modeler assigned the probability of an

Enemy_Target being identified 60% more often than a Friendly_Target.

EXHAUSTIVE GENERATION DEMONSTRATION:

Consider the following Model:

ROOT Radar_Target_Identified: (

(Enemy_Target | Friendly_Target)

[(In_Weapon_Range Target_Lock)]

123

(* <1-3> Target_Ready_For_Fire *));

Set following probabilities:

 60% probability of event Enemy_Target happening instead of event

Friendly_Target

 33.3% probability of events In_Weapon_Range and Target_Lock to

appear

 20% probability of event Target_Ready_For_Fire to appear one

time

 30% probability of event Target_Ready_For_Fire to appear two

times

 50% probability of event Target_Ready_For_Fire to appear three

times

The following model represents the system modeling requirements:

ROOT Radar_Target_Identified: (

(Enemy_Target | <0.40> Friendly_Target)

[<0.33> (In_Weapon_Range Target_Lock)]

(*<1-3/0.20,0.30,0.50> Target_Ready_For_Fire *));

The following filter was applied to the Radar_Target_Identified model:

Figure 50: Radar_Target_Identified Filter

124

Model Results

The graphic displays the probability of all possible scenarios using the

exhaustive scenario generation approach.

Figure 51: Model Results Showing Probability

Note: If the user selects query criteria on the options page, the result set

may contain probability values for scenarios that do not total 100%. This is due

to possible scenarios having been filtered from the final result set:

Figure 52: Model Results Showing Probability

125

The results of the Radar_Target_Identified event, after applying the filter,

were a record set of six possible scenarios, with a probability of 33% that one of

the six events will occur.

RANDOM GENERATION DEMONSTRATION

The model is an exact copy of the model used in the exhaustive scenario

generation method demonstrated:

Consider the following Model:

ROOT Radar_Target_Identified: (

(Enemy_Target | Friendly_Target)

[(In_Weapon_Range Target_Lock)]

(* <1-3> Target_Ready_For_Fire *));

Set following probabilities:

 60% probability of event Enemy_Target happening instead of event

Friendly_Target

 33.3% probability of events In_Weapon_Range and Target_Lock to

appear

 20% probability of event Target_Ready_For_Fire to appear one

time

 30% probability of event Target_Ready_For_Fire to appear two

times

 50% probability of event Target_Ready_For_Fire to appear three

times

126

The following model represents the system modeling requirements:

ROOT Radar_Target_Identified: (

(Enemy_Target | <0.40> Friendly_Target)

[<0.33> (In_Weapon_Range Target_Lock)]

(*<1-3/0.20,0.30,0.50> Target_Ready_For_Fire *));

 Demonstration:

To generate random scenario generation, the user must select the

"Random Scenario Generation" link at the top of the options page:

Figure 53: Random Scenario Generation Options

Model Results

In the following graphic, Eagle6 displays how many times each scenario

was generated and the probability for each scenario (calculated using the total

number of scenarios and the number of times each scenario appeared).

127

Figure 54: Model Results Showing Probability for 1000 Generated Scenarios

H. DEMONSTRATION SUMMARY

The demonstrations 1-5 show how the Eagle6 application may improve

the current method in which the SSSTRP executes Software Safety

assessments. Demonstrations six and seven demonstrate the ability for Eagle6

to test functional requirements, which is also a part of the SSSTRP process. The

following Hazard State conditions were created to demonstrate the application of

Eagle6 to the Software Safety domain, with specific applicability to the SSSTRP

process:

 Find scenarios where the gun weapon system may require more

watts than the gun weapon system can produce.

 Find scenarios where the gun weapon system may require more

network bandwidth than the gun weapon system network can

provide.

 Find scenarios where the gun weapon system may experience the

failure of a Gun Control Center Open Fire Command.

128

 Find a set of scenarios that contain at least one GCC_openFire

event, and also have at least one slice of events that have the

Attribute Req_Num_Man_Approv_For_Cmd with a sum that is >=

3.

 Find scenarios where Gun Console Computer tries to execute an

Open Fire Command and it ends with a system timeout.

The demonstrations 1-5 show how the system and environment can be

modeled with specific focus on the ability to model system behavior. This

capability is especially helpful in the SSSTRP software safety domain as the

need exists to not only check for potential software hazard states, but also create

domain models that enable the testing of potential software with realistic

environmental events, and the probabilities associated with those events. This

approach is much more refined and allows for domain models to better reflect the

operational behavior in which the systems function. With a methodology for

modeling system behavior, and an ability to generate estimates for both

functional and nonfunctional requirements, the next step is to identify how the

proposed methodology can be integrated into the SSSTRP process.

I. PROTOTYPE SSSTRP EVALUATION METHODOLOGY

The prototype SSSTRP evaluation methodology is based on the research

of the current SSSTRP process (Chapter I), the problems associated with the

SSSTRP evaluation process (Chapter II), and Eagle6 capabilities that are

demonstrated in Chapter III). The prototype has not been tested, but is included

in this research based on the relevance to the domain. The purpose of the

prototype SSSTRP evaluation methodology is to recommend changes to the

current SSSTRP process that includes the integration of our modeling

methodology, as well as a more definitive evaluation process.

Our research demonstrates that Eagle6 was able to provide the ability to

model potential systems and how they interact with their environment. The

Eagle6 solution requires an integration plan that introduces the methodology into

129

the SSSTRP process. The prototype SSSTRP evaluation methodology is

recommended for integrating a standardized methodology for automating system

testing.

The solution to model a gun weapon system and to have the ability to test

for software safety assertions was addressed in Chapter III. The Prototype

SSSTRP Evaluation Methodology is designed to obtain the functional and

nonfunctional requirements of a system before the acquisition community has

released the RFP. This change in process allows for the development of a TDP

questionnaire that is designed to elicit responses that can be entered into a

model and evaluated. The SSSTRP Evaluation Methodology has five major

components:

Step 1: Develop Domain Model

Purpose: To develop a domain model of the current system.

Expected Benefits: The MP model enables the SSSTRP to model the

current system state in order to evaluate proposed changes to the system.

Artifacts:

 MP Model

 List of Hazard States

 Assertion Library

 Functional Requirements

 Nonfunctional Requirements

Step 2: Develop Vendor Questionnaire

Purpose: The Vendor Questionnaire is designed to elicit responses to

questions about system behavior. Formatting the Vendor Questionnaire in such

a way that requires the vendor to respond with measurable answers enables the

evaluation of the TDP to be automated.

130

Expected Benefits: MP does not require specific knowledge of systems

in order to model a system. This abstract approach to SoS modeling supports a

vendor questionnaire structure that is designed to elicit answers that reflect the

compatibility of the proposed system relative to the current operational

environment.

Artifacts:

Vendor Questionnaire

Step 3: Organize Vendor TDP Response

Purpose: Organizing the Vendor TDP response requires the TDP

answers to be formatted in a standardized way that can be input into the domain

model.

Expected Benefits: Standardizing the TDP response into data that can

be automatically read into a domain model reduces risk of human error and

standardizes the results that are output by the model.

Artifacts:

TDP Model Input Files

Step 4: Formally Evaluate Software

Purpose: To execute test plan and generate results in graphical and

textual formats. The results of the tests are formatted and given to the SSSTRP

for evaluation.

Expected Benefits: Executing standardized test plans enables the

SSSTRP to evaluate the results by generating the following reports:

 Comparison Analysis - Compares the system side-by-side to create

an evaluation of the proposed systems in a consolidated format.

 Assertion Checking Reports - Reports that identify system

scenarios where assertion violations were found.

131

 Functional and Nonfunctional System Performance Reports -

Reports that show how the system may perform when integrated as

part of an overall SoS.

Artifacts:

 Comparison Analysis

 Assertion-Checking Reports

 Functional System Performance Reports

 Nonfunctional System Performance Reports

Step 5: Conduct SSSTRP Review

The SSSTRP reviews the results of the tests and requests additional tests

if needed. SSSTRP findings, reports, and recommendations are then forwarded

to the WSESRB for final determination.

132

Figure 55: Proposed SSSTRP Evaluation Methodology

133

J. SUMMARY

Providing the SSSTRP community with high-level models that may satisfy

a portion of the software safety assessment process improves the current

inspection-based evaluation methodology. Without a high-level modeling

process, the alternative is to implement the system and to perform testing.

Manual testing is a very expensive and timely alternative, which may be partially

satisfied using the prototype methodology and tools that are covered in this

chapter.

The Prototype SSSTRP Evaluation Methodology is designed to obtain the

functional and nonfunctional requirements of a system before the acquisition

community has released the RFP. This change in process allows for the

development of a TDP questionnaire that is designed to elicit responses that can

be entered into a model and evaluated. The revised SSSTRP process includes

artifacts that supports a more structured evaluation process.

K. LIMITATIONS OF THE PROTOTYPE SSSTRP PROCESS

The proposed revised SSSTRP process introduces the results of this

research into the current SSSTRP process while adding artifacts within each

evaluation stage. The proposed changes to the SSSTRP process have not been

tested within the SSSTRP process; therefore the validity of the proposed process

is unknown.

134

THIS PAGE INTENTIONALLY LEFT BLANK

135

IV. EAGLE6–PROTOTYPE SOFTWARE ARCHITECTURE
MODELING SOFTWARE

The need for graphical representation of system models required

automated tools to compile and display traces of model execution in textual and

graphical formats. The demonstration of Eagle6 for naval gun weapon system

software was achieved by developing custom software with the following

components.

 Custom software (compiler/lexer/parser) to process MP models.

 Custom software that displays the MP model in textual and

graphical formats.

 Dynamic Query interface that enables the user to return a set of

scenarios based on an iterative or random scenario generation

approach. These approaches are described later in this section.

The MP model used to demonstrate the modeling software can be found

in Appendix A.

The Eagle6 application was designed and built with programming help

from Alex Gociu.

A. EAGLE6 PROTOTYPE SOFTWARE ARCHITECTURE

Eagle6 modeling software consists of the following functionality:

 Parse and validate modeling language

 Generate all possible scenarios within scope

 Build dynamic queries

 Display scenarios graphically

 Export scenarios to text

 Provide detailed scenario runtime output

136

Figure 56: Eagle6 Prototype Software Architecture

The Eagle6 Prototype Software diagram model represents the Eagle6

system architecture.

B. EAGLE6 PROTOTYPE SOFTWARE DIAGRAM

137

Figure 57: Eagle6 User Experience Model

138

C. MP MODEL OF INTERACTION BETWEEN EAGLE6 AND USER

The following MP model demonstrates the ability to model system design

as demonstrated in the "Eagle6 User Experience Model."

ROOT User_activity: (
 StartModeling
 (*
 DevelopModelCode
 SendModelCodeToParser
 (
 (
 SendErrorsToUser
 ReadModelCodeErrors
)
 | (
 SendAstToUser
 FormatModelAst
 ReviewModel
 (
 RejectModel
 | (
 AcceptModel
 (*
 SetFilters
 FormatModelFilters
 SendModelToCompiler
 SendScenariosToUser
 ReadScenarios
 *)
)
)
)
)
 *)
 FinishModeling
);

ROOT Parser_activity: (*
 SendModelCodeToParser
 ParseModelCode
 (
 (
 ModelCodeHasErrors
 SendErrorsToUser
)
 | (
 ModelCodeHasNoErrors
 GenerateAst
 SendAstToUser
)
)
*);

139

ROOT Compiler_activity: (*
 SendModelToCompiler
 BuildModelFromAst
 GenerateScenarios
 FilterScenarios
 SendScenariosToUser
*);

Parser_activity, User_activity SHARE ALL SendModelCodeToParser, SendErrorsToUser,
SendAstToUser;
Compiler_activity, User_activity SHARE ALL SendModelToCompiler, SendScenariosToUser;

140

Figure 58: Eagle6 MP Architecture Scenario

141

The Eagle6 MP Architecture Scenario represents the Eagle6 system

architecture. MP has the capability to quickly modify existing schemas to be

used in future system architecture verification.

D. PROTOTYPE COMPILER ARCHITECTURE

The system has four major components:

 User Interface (located on web server)

 Model Compiler (located on web server)

 Model Parser (java applet)

 Model Viewer (java applet)

1. Eagle6 Compiler Design

The Prototype Model Compiler is built in C++ and is located on a web

server. The compiler has the following functionality:

 Interact with the User

o Provide HTML graphical interface for the user

o Provide model parser and viewer Java applets

o Get abstract syntax tree from model

o Provide and get simulation options

o Provide scenarios list

o Export scenarios to different formats

 Interact with the Eagle6 Model Compiler

o Send model program and simulation options

o Create a set of all possible scenarios within scope

142

2. Eagle6 Lexer and Parser

The Eagle6 Model Parser provides the functions of a lexer and parser for

the MP language (Auguston, Software architecture built from behavior models,

2009). The Eagle6 Model Parser receives user input representing an MP model,

validates the code, returns syntax error information (if applicable), and builds the

abstract syntax tree. The Eagle6 Model Parser is built in Java and is a Java

applet.

Figure 59: Prototype MP Editor

E. EAGLE6 PROTOTYPE PARSER AND HELPER

The “Parse Code” button executes the MP Model Code Parser that checks

for syntax errors in the model. If the model structure is incorrect, an error

message is displayed that identifies the specifics of the error. The following is an

example of an error message:

143

Figure 60: Eagle6 Prototype Parser Error Handling

If the code is parsed successfully, the user is presented with a page that

allows the user to further define the criteria for generating scenarios.

F. EAGLE6 PROTOTYPE VIEWER FOR GRAPHICAL AND TEXTUAL
DISPLAY OF SCENARIO

The Eagle6 Prototype Viewer is built in Java and is a Java applet with

JGraph being the application used for graphical representation of the model. The

scenario generation options page allows for models to be generated and tested

with a full degree of fidelity using the detail display options.

1. Eagle6 Prototype Viewer General Options

The scenario generation options page is used to set the parameters of

your test. This page has the following characteristics: (1) The general options of

your test can be set to include the expansion scope and the level of details

returned from the compiler; and (2) scenario filter conditions represent dynamic

queries that are used to set filtering parameters, so the results returned by the

compiler represent the user's target test data.

144

Figure 61: Eagle6 Prototype Viewer Scenario Generator

Default Expansion Scope – The purpose of the default expansion scope

is to limit the size of the "*" rule in order to better define the scenario’s

parameters. For example, if the test scenario requires the gun weapon system to

fire three rounds, the scenario’s scope is set to “3,” thereby removing the infinite

(“*”) default parameter. In the absence of an expansion scope, setting this value

will result in a finite number of scenarios.

Display x scenarios – Defines the total number of scenarios to be

displayed.

Display starting scenario no. – Displays scenarios starting at a specific

number. The option of generating a list starting at a specific number allows for a

streamlined architecture verification process.

145

2. Eagle6 Prototype Viewer Scenario Generation Filter

In order to refine the models returned from the compiler, it is necessary to

refine the data inputs that are used by the compiler in order to filter scenario

results. Eagle6 uses a dynamic query builder to satisfy this requirement, as

shown in the event count conditions function:

Figure 62: Eagle6 Prototype Viewer Scenario Generator Filter

EventCount (event count) – Enables the user to refine the results returned

from the compiler by limiting the results to scenarios that have a specific event,

and event count condition.

 Event – Event is used to select a specific event that is supplied to

the dynamic query builder.

 Operator – Sets the evaluation parameters for the query builder.

Values are: "<", "<=", ", "=", ">", ">="

 Value – Value sets the specific event count parameters used by the

query builder.

146

SliceSum (maximum slice sum) – SliceSum is used to find scenarios that

contain events that run in parallel and have attribute values that, when summed,

meet the query builder criteria.

 Attribute – User-defined event attribute that is identified in the

system model.

 Operator – Sets the evaluation parameters for the query builder.

Values are: "<", "<=", ", "=", ">", ">="

 Value – Value sets the specific event count parameters used by the

query builder.

ChainSum – ChainSum is used to find scenarios that contain events that

run in sequence and have attribute values that, when summed, meet the query

builder criteria.

 Attribute – User-defined event attribute that is identified in the

system model.

 Operator – Sets the evaluation parameters for the query builder.

Values are: "<", "<=", ", "=", ">", ">="

 Value – Value sets the specific event count parameters used by the

query builder.

Run Simulation

The program will calculate all possible scenarios within scope, and display

a list of scenarios for the user to view:

147

Figure 63: Eagle6 Prototype View Scenario Generator Result

The results of the test were five possible scenarios. Using the “Show

Details” function, the number of events and number of relationships from each

scenario are also displayed. The scenario test can be viewed by the string or

graphical display options.

The Eagle6 Prototype Viewer is used for displaying scenarios in graphical

representation. Events are the vertices and the IN/PRECEDES relations

between them, noted by arrows.

Using the graphical interface, the user is able to filter event views. For

example, the following graphic represents the scenario with associated events

and connectors:

148

Figure 64: Eagle6 Prototype Viewer Filter Functionality

The result of the filter interface is the hiding of all unselected events, which

allows for a more readable graphic display of the scenario.

G. LIMITATION OF EAGLE6 TOOL

The Eagle6 tool is considered a prototype and has not been tested using

multiple case studies and test tools. The tool has the following limitations:

 Tool Verification – The tool does not have the capability to formally

verify the MP model represents the current software system

architecture. Inspection techniques that compare system behavior

with scenarios that are generated from custom queries are the

current method for verifying models. However, it seems logical that

log tools that run in the system architecture can be extracted and

compared to the MP model. This is an area that has been

149

identified as future work, and is on the development plan for an

Eagle6 future version.

 Determining the “Right” Scope – Determining the proper scope that

meets the criteria for returning the maximum amount of assertion

violations is largely dependent upon the complexity and purpose of

the model. We cannot guarantee that the Small Scope Hypothesis

will detect a majority of errors. However, given the current state of

the SSSTRP evaluation process that uses inspection techniques

with arbitrary test cases, the use of a tool that can test hundreds of

scenarios is an improvement of the current software safety

evaluation process. A proper scope is dependent upon the

situation and the relative risk. Future work is required to estimate

the proper scope.

 Complex Scope Computing – Enterprise models that have

exponential possibilities of scenarios result in a risk of the

computing power not being able to produce an acceptable number

of scenarios with the Small Scope.

 Abstraction Layer Definitions – The tool does not have the ability to

standardize the layers of abstraction. However, the tool does give

the user the capability to customize/filter the visual representation

of the scenario within the visualization tool. The current level of

abstraction is defined by the User’s decision for what events they

want to see.

 Architecture Modeling Versus Software/System Testing – The tool

is meant to be used for software/system architecture and testing

and is not meant to be used for system testing.

 Abstraction Risks for Loss of Critical System Behavior – The

concept of abstraction means that assumptions have to be made

about certain details of the software system. Modeling at the

150

abstraction layer contains a risk of developing a model that does

not include critical details of the system. The MP construct allows

for certain attributes to be modeled, but not all aspects for system

behavior can be modeled at the abstract level.

 Statistical Evaluation in Software Safety – The process of

generating random scenarios and calculating probabilities for

events implies uncertainty, which may be unacceptable for some

software safety assessments.

 IF and WHERE Constructs are not available – The current toolset

does not allow for conditional evaluation during the scenario

generation. This concept is in design and is expected to be in a

future release. The WHEN handler is discussed in the ICCRTS

2010 paper by Auguston/Whitcomb entitled "System Architecture

Specification Based on Behavior Models,” in Proceedings of the

15th ICCRTS Conference (International Command and Control

Research and Technology Symposium), Santa Monica, CA, June

22-24, 2010.

 Dynamic Attributes – Attributes that require a dynamic state cannot

be modeled within the current tool and is reserved for future work.

 Finite vs. Infinite System Modeling – The current tool does not

support modeling systems that do not have a finite execution.

 Limitations of the Prototype SSSTRP Process – The proposed

revised SSSTRP process introduces the results of this research

into the current SSSTRP process while adding artifacts within each

evaluation stage. The proposed changes to the SSSTRP process

have not been tested within the SSSTRP process; therefore the

validity of the proposed process is unknown.

 Risks of Jackson’s Small Scope Hypothesis – Determining

appropriate scope levels that satisfy architecture verification is

151

dependent upon the situation and complexity of the model.

Jackson’s Small Scope Hypothesis is incapable of being verified as

the definition of “Small Scope” is not verifiable. Future work is

required to determine appropriate scope requirements for software

safety assessments.

 Risk Assessment Capability – The Eagle6 tool is not designed to

evaluate risk, and to combine the probability of events and risk to

create a Risk Assessment. This issue is identified as future work.

152

THIS PAGE INTENTIONALLY LEFT BLANK

153

V. RESEARCH CONCLUSION AND CONTRIBUTIONS

The objective of the research was to identify the problems associated with

the high number of SSSTRP failures. The research included a review of three

years of unclassified SSSTRP reports, and an analysis of the failures (Chapter

II). A prototype modeling methodology, and the ability to apply the modeling

methodology to the software safety domain, was demonstrated in Chapter III.

The initial Eagle6 prototype modeling methodology framework was tested

using a case study of a naval gun weapon system, found in Appendix A. The

Eagle6 tool can generate executable code that can be evaluated using macro

queries, which improves the current SSSTRP evaluation methodology found in

Chapter II. An ability to transfer simple, abstract modeling techniques into formal

methods that are able to be tested was created. The following is a summary of

my research contribution relative to the improvements of the current SSSTRP

process of evaluating potential gun weapon system architectural changes:

Methodology and Tools to Support Software System Safety Analysis for

the SSSTRP Evaluation Process - The Eagle6 tool gives the SSSTRP modeler

the ability to model the interaction between the system and its environment, as

demonstrated in Chapter III. The ability to model environmental effects on

software/systems enables the SSSTRP member to evaluate potential gun

weapon system changes with higher fidelity compared to the current evaluation

process.

Higher Fidelity of SSSTRP Evaluation via Assertion Checking – The

current SSSTRP evaluation methodology is random testing using inspection

techniques, as identified Chapter II. The Eagle6 tool enables the SSSTRP to

create assertions about specific components and behaviors of a system, and

gives them the tools to verify the assertions via formal queries.

Two Modes of Scenario Generation – Our modeling tool enables the

SSSTRP to perform an exhaustive search for model verification within scope,

154

and Random scenario generation for statistical estimates of nonfunctional

requirements, such as performance.

Extension of Monterey Phoenix Modeling Methodology - Our research

extended the MP framework by using predefines macro queries (concept of

“Chain” and predefine aggregate operations over events).

A. FUTURE RESEARCH OPPORTUNITIES

Research opportunities have arisen within this project but have not been

fully explored. These issues are related to the SSSTRP process. Suggested

areas for future research include:

 Business Process Reengineering–Eagle6 produces abstract views

of systems; prototyping proposed BPR solutions could be

researched.

 Oracle/Black Box Testing--Eagle6 does not require the input of

system specifics. Future research opportunities exist to test system

architectures that have black box components.

 Refinement of the Model Compiler – The current compiler has

hardware limitations that may be improved by improving the

hardware processing capability, and the compiler software design.

 Graphical User Interface for Model Abstraction – A graphical design

tool that automatically generates model code could be developed.

A visual interface that allows dynamic addition of systems (and

subsystems), and connections between them, would improve the

speed of development.

 Development of a methodology that encompasses the evaluation of

Dynamic Attribute Values - Evaluation of dynamic attribute values is

necessary, since the events of a system often cause chain

reactions that could change an attribute's value.

155

 Development of the SSSTRP Evaluation Process – This

dissertation describes a suggested methodology for implementing

our methodology into the SSSTRP Software evaluation process.

Further research that is focused on the process and implementation

of a formal method for evaluating software is needed.

 Risk Assessment – Capturing the measured consequence of an

event, and combining it with the probability of the event, should

lead to some form of Risk Assessment.

 Model Verification – An ability to verify the accuracy of an MP

model is certainly an area for future research.

156

THIS PAGE INTENTIONALLY LEFT BLANK

157

LIST OF REFERENCES

Abowd, G., Alen, R., & Garlan, D. (1995). Formalizing style to understand
descriptions of software architecture. ACM Transactions on Software
Engineering and Methodology, 319–364.

Allen, R. (1997). A formal approach to software architecture. Pittsburg: Ph.D.
Thesis, Carnegie Mellon University, CMU Technical Report.

Allen, R., & Garlan, D. (1997). A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 213–249.

Archer, M., Lim, H., Mitra, S., Lynch, N., & Umeno, S. (2008). Specifying and
proving properties of timed I/O automata using tempo. Design Automation
for Embedded Systems, 1–2.

Auguston, M. (1995). Program behavior model based on event grammar and its
application for debugging automation. In 2nd International Workshop on
Automated and Algorithmic Debugging, (pp. 277–291).

Auguston, M. (2009). Software architecture built from behavior models. ACM
SIGSOFT Software Engineering Notes, 34–39.

Auguston, M. (2009b). Monterey phoenix, or how to make software executable.
OOPSLA 2009, (pp. 1031–1038).

Auguston, M., & Whitcomb, C. (2010). System architecture specification based
on behavior models. In International Command and Control Research and
Technology Symposium, (pp. 1–20).

Auguston, M., Michael, B., & Shing, M.-T. (2006). Environment behavior models
for automation of testing and assessment of system safety. Information
and Software Technology, Elsevier, 971–980.

Azani, C. (2001). The test and evaluation challenges of following an open
system. ITEA Journal, 22 (3), 1-15.

Banatre, J.-P., & Metayer, D. L. (Jan). Programming by multiset transformation.
Communnications of the ACM, 36(1), 98–111.

Barrett, P. (1993). Delta-4: An open architecture for dependable systems. IEEE
Colloquium on Safety Critical Distributed Systems (pp. 2.1-2.7). London:
IEEE.

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice,
(2nd ed.). Boston: Addison-Wesley.

Bell, R. (2006). Introduction to IEC 61508. 10th Australian Workshop on Safety
Critical Systems and Software (pp. 3–12). Sydney: Australian Computer
Society Inc.

158

Bertolino, A., & Mirandola, R. (2004). Software performance engineering and
component-based systems. 4th International Workshop on Software and
Performance (pp. 238–242). Redwood Shores: ACM.

Bhansali, P. (2005). Universal software safety standard. ACM SIGSOFT
Software Engineering Notes, 1–4.

Booch, G., Jacobson, I., & Rumbaugh, J. (2000, June 3). OMG unified modeling
language specification. Retrieved April 4, 2008, from OMG: UML
Specification: http://www.omg.org/docs/formal/00-03-01.pdf

Clements, P., & Shaw, M. (2009). The golden age of software architecture
revisited. IEE Software, 70–72.

Coronato, A., d'Acierno, A., & De Pietro, G. (2005). Automatic implementation of
constraints in component based applications. Information and Software
Technology, 47(7), 497–509.

Department of the Navy. (2005, March 8). OA Assessment Model. Washington,
DC.

Department of the Navy. (2008, June 4). Naval Open Architecture Contract
Guidebook. Retrieved August 31, 2009, from Naval Open Architecture:
https://acc.dau.mil/CommunityBrowser.aspx?id=18016&lang=en–US

England, P., Lampson, B., Manferdelli, J., Peinado, M., & Willman, B. (2003). A
trusted open platform. Computer, 36(7), 55–63.

Fabresse, L., Dony, C., & Huchard, M. (2008). Foundations of a simple and
unified component–oriented language. Computer Languages, Systems
and Strutures, 34(2–3), 130–149.

Graph Transformation. (1997). Handbook of graph grammars and computing. (G.
Rosenberg, Ed.) River Edge: World Scientific Publishing Company.

Hoare, C. A. (1985). Communicating sequential processes. New York: Prentice-
Hall.

Inverardi, P., & Wolf, A. L. (1995). Formal specification and analysis of software
architectures using the chemical abstract machine model. IEEE
Transactions on Software Engineering, 21(4), 373–386.

Jackson, D. (2006). Software abstractions: logic, language, and analysis.
Cambridge: MIT Press.

Jackson, D. (2009). A direct path to dependable software: who could fault an
approach that offers greater credibility at reduced cost? Communications
of the ACM, 78–88.

Jackson, D. (2009b). MIT: Alloy analyzer 4.1.10. Retrieved May 5, 2009, from
Alloy Analyzer 4.1.10: http://alloy.mit.edu/community/software

Jackson, D., & Damon, C. A. (1996). Elements of style: Analyzing a software
design feature with a counter example detector. IEEE Transactions on
Software Engineering, 22.

159

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 558–565.

Leveson, N. (1995). Safeware: System safety and computers. New York:
Addison–Wesley.

Medikonda, B., & Panchumarthy, S. (2009). A framework for sofware safety in
safety–critical systems. SIGSOFT Software Engineering Notes, 34(2), 1–
9.

Merola, L. (2006). The COTS software obsolescence threat. 5th International
Conference on Commercial–off–the–Shelf (COTS)–Based Software
Systems (pp. 127–133). New York: IEEE.

Mohamed, A., Ruhe, G., & Eberlein, A. (2007). Decision support for handeling
mismatches between COTS products and system requirements. Sixth
International IEEE Conference on Commercial–off–the–Shelf (COTS)–
based Software Systems (pp. 63–72). New York: IEEE.

National Aeronautics and Space Administration. (2004). NASA Software Safety
Guidebook. Washington, DC: NASA.

National Aeronautics and Space Administration. (2004, July 8). NASA–STD–
8719.13B. Retrieved July 9, 2009, from Software Safety Standard:
http://www.hq.nasa.gov/office/codeq/doctree/871913B.pdf

Naval Sea Systems Command. (97). Navy Weapon System Safety Program.
Washington: NAVSEAINST 8020.6D.

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 40–52.

Rajsuman, R., & Noriyuki, M. (2004). Open architecture test system: System
architecture and design. 2004 International Test Conference (pp. 403–
412). New York: IEEE.

Rehman, M., Yang, X., Dong, J., & Ghafoor, M. (2005). Prioritized selecting
COTS vendor in COTS–based software development process. Canadian
Conference on Electrical and Computer Engineering (CCECE) (pp. 1839–
1845). Saskatoon: IEEE.

Reussner, R., Schmidt, H., & Poernomo, I. (2003). Reliability prediction for
component–based software architectures. The Journal of Systems and
Software, 241–252.

Rivera, J. (2010). Applying architecture modeling methodology to the naval
gunship software safety domain. ACM/IEEE 13th International Conference
on Model Driven Engineering Language and Systems (pp. 43–48). Oslo,
Norway: IEEE.

Rivera, J., & Luqi. (2010). Requirements framework for the software system
safety technical review panel technical review package. Monterey: Naval
Postgraduate School.

160

Spivey, J. M. (1992). The z notation: a reference manual. New York: Prentice
Hall International Series in Computer Science.

Tamura, Y., Yamada, S., & Kimura, M. (2006). Sofware reliability modeling in
distributed development environment. Journal of Quality in Maintenance
Engineering, 12 (4), 425–432.

U.S. Navy. (2008, January 3). USS Forrestal (CV–59). Retrieved February 19,
2009, from DEPARTMENT OF THE NAVY–NAVAL HISTORICAL
CENTER: http://www.history.navy.mil/danfs/f3/forrestal.htm

Wulf, V., Pipek, V., & Won, M. (2008). Component–based tailorability: Enabling
gighly flexible software applications. International Journal of Human–
Computer Studies, 66, 1–22.

161

APPENDIX A – MP MODEL FOR GUN WEAPON SYSTEM MK 34 MOD 1

// the activity of AN/SPS–67 [R2D] – 2–D Surface Search Rotating Radar
ROOT R2D_activity: {(* <1> R2D_displayNewTarget *)}; // R2D displays a new target on the screen

// the activity of C&D [CD] – Command and Decision.
ROOT CD_activity: {(* <1> CD_spotNewTarget *)}; // CD spots a new target on R2D screen
 // CD waits for R2D to display a new target and then decides what to do with that target
 CD_spotNewTarget: (R2D_displayNewTarget(CD_ignoreTarget | <0.8>
 (CD_request_GCC_setTarget // CD requests GCC more information about the target
 CD_wait_GCC_setTarget // CD waits for GCC to set target
 ((GCC_targetNotSet // GCC fails to set target
 CD_targetLost) | <0.873> (GCC_targetSet // GCC sets the target and returns target info
 CD_followTarget // CD follows target movements and waits to see what happens
 (CD_abortTarget // CD aborts target, considers it unimportant
 | <0.8> (CD_request_GCC_openFire CD_wait_GCC_openFire // CD waits for GCC to open fire
 (GCC_openFireFailed // GCC failed to open fire
 | <0.25249031177832> targetMissed
 | <0.58914406084842> targetHit))))))));

// the activity of Gun Console Computer [GCC] – Sub–element of the GCS.
ROOT GCC_activity: {(* <0–1/0.2,0.8> GCC_setTarget *) }; // GCC sets a target
 GCC_setTarget: (// GCC sets a target (waits for CD to request set Target and returns target information)
 CD_request_GCC_setTarget // GCC waits CD to request to set target
 (GCC_targetNotSet | <0.9> (GCC_request_R3D_setTarget // GCC requests R3D more information about the target
 GCC_wait_R3D_setTarget // GCC waits for R3D to set target
 ((R3D_targetNotSet // R3D fails to work
 GCC_targetNotSet) // GCC fails to work because of R3D
 | <0.97> (R3D_targetSet // R3D sets the target and returns target info
 GCC_targetSet))))); // GCC sets the target and returns target info

// the activity of AN/SPY–1D [R3D] – 3–D Air Defense and Surface Search Phased Array Radar
ROOT R3D_activity: {(* <0–1/0.28,0.72>R3D_setTarget*)};
 // R3D sets a target

162

R3D_setTarget: (// R3D sets target on radar (it waits for GCC to request and returns additional information about target)
GCC_request_R3D_setTarget // waits for GCC to request a set target operation
(R3D_targetNotSet // R3D fails to set target
 | <0.97> R3D_targetSet)); // R3D manages to set target

ROOT GCC2_activity: {(* <0–1/0.44128,0.55872> GCC_openFire *) }; // GCC open fires on target
 GCC_openFire: (// GCC opens fire at target (waits for CD to request openFire and opens fire)
 CD_request_GCC_openFire // GCC waits for CD to request to open fire
 (GCC_openFireFailed // GCC is not working ok and it fails to open fire
 | <0.98> (GCC_request_GMP_openFire // GCC requests GMP to open fire
 GCC_wait_GMP_openFire // GCC waits for GMP to open fire
 ((GMP_openFireFailed // GMP fails to open fire
 GCC_openFireFailed) // GCC fails to open fire because of GMP
 | <0.257643175284> targetMissed
 | <0.601167409029> targetHit))));

// the activity of Gun Mount Processor AN/UYK–44 EP/OSM [GMP]
ROOT GMP_activity: {(* <0–1/0.4524544,0.5475456>
 GMP_answerRequest_GCC_openFire *)};// GMP answers request from GCC to open fire
 GMP_answerRequest_GCC_openFire: (// GMP answers request from GCC to open fire
 GCC_request_GMP_openFire // GMP waits for GCC to request to open fire
 (GMP_openFireFailed // GMP is not working ok and it fails to open fire
 | <0.99> (GMCP_displayOpenFireRequest // display on GMCP screen a fire request
 ((GMCP_openFireFailed // GMCP fails to open fire
 GMP_openFireFailed // GMP fails to open fire because of GMCP
)| <0.6072398071> targetHit | <0.2602456316> targetMissed))));

// the activity of Gun Mount Control Panel MK 437 Mod 1 [GMCP] – Backup Operator's console installed below the gun mount.
ROOT GMCP_activity: {(* <0–1/0.457929856,0.542070144> GMCP_answerFireRequest *)}; // GMCP answers a fire request when
displayed on screen
GMCP_answerFireRequest: (// GMCP answers a fire request
 GMCP_displayOpenFireRequest // GMCP displays an open fire request on screen
 (GMCP_openFireFailed // GMCP fails to open fire
 | <0.99> (GMCP_request_GMP_ossData // GMCP requests optical sight system target data from GMP

163

 GMCP_wait_GMP_ossData // GMCP waits for optical sight system data from GMP
 ((GMCP_failReceiving_GMP_ossData // GMCP doesn't receive oss target data from GMP
 GMCP_openFireFailed)// GMCP fails to open fire
 | <0.9223662294> (GMCP_receive_GMP_ossData // GMCP receives optical sight system data
 (GMCP_send_GM_openFireCommand // GMCP sends GM an open fire command
 GMCP_wait_GM_openFireCommand // GMCP waits for GM to open fire
 ((GM_openFireFailed // GM fails to open fire
 GMCP_openFireFailed) // GMCP fails to open fire because of GM
 | <0.665> targetHit // target is hit
 | <0.285> targetMissed)))))));// target is missed

ROOT GMP2_activity: {(* <0–1/0.46335055744,0.53664944256>
 GMP_answerRequest_GMCP_ossData *)}; // GMP answers a request from GMCP for optical sight target data
 GMP_answerRequest_GMCP_ossData: (// GMP answers a request of oss data from GMCP
 GMCP_request_GMP_ossData // GMP waits for GMCP to request ossData
 (GMCP_failReceiving_GMP_ossData // GMCP doesn't receive oss data because GMP fails to work
 | <0.95> (GMP_request_CDC_ossData // GMP requests CDC oss data
 GMP_wait_CDC_ossData // GMP waits for CDC oss data
 ((GMP_failReceiving_CDC_ossData // GMP doesn't receive oss data from CDC
 GMCP_failReceiving_GMP_ossData) // GMCP doesn't receive oss data because of CDC
 | <0.95089302> (GMP_receive_CDC_ossData // GMP receives oss data from CDC
 GMCP_receive_GMP_ossData))))); // GMCP receives oss data from GMP

// the activity of Optical Sight System MK 46 Mod 1 – Control Display Console MK 132 Mod 0 [CDC]
ROOT CDC_activity: {(* <0–1/0.490183029568,0.509816970432>
 CDC_answerRequest_GMP_ossData*)}; // CDC answers the request from GMP of oss data
 CDC_answerRequest_GMP_ossData: (// CDC answers the request from GMP of oss data
 GMP_request_CDC_ossData // CDC waits for GMP to request ossData
 (GMP_failReceiving_CDC_ossData // CDC is not working ok, GMP doesn't receive oss data
 | <0.99> (CDC_request_EOD_ossData // CDC request EOD oss data (thermal and daylight)
 CDC_wait_EOD_ossData // CDC waits for ossData from EOD
 ((CDC_failReceiving_EOD_ossData // CDC doesn't receive oss data from EOD
 GMP_failReceiving_CDC_ossData)// GMP doesn't receive oss data because of EOD
 | <0.960498> (CDC_receive_EOD_ossData // CDC receives oss data from EOD

164

 GMP_receive_CDC_ossData))))); // GMP receives oss data from CDC

// the activity of Optical Sight System MK 46 Mod 1 – Electro–Optic Director MK 85 Mod 1 [EOD]
ROOT EOD_activity: {(* <0–1/0.49528119927232,0.50471880072768>
 EOD_answerRequest_CDC_ossData *)};// EOD answers the request from CDC of oss data
 EOD_answerRequest_CDC_ossData: (// EOD answers the request from CDC of oss data
 CDC_request_EOD_ossData // EOD waits for CDC to request optical sight system data
 (CDC_failReceiving_EOD_ossData // EOD is not working, CDC doesn't receive EOD data
 | <0.98> (EOD_requestDaylightSensorData // EOD requests data from daylight sensor
 ((EOD_failGettingDaylightSensorData // EOD fails getting data from daylight sensor
 CDC_failReceiving_EOD_ossData) // CDC doesn't receive EOD data because of the daylight sensor
 | <0.99> (EOD_receiveDaylightSensorData // EOD receives data from daylight sensor
 EOD_requestThermalSensorData // EOD requests data from thermal sensor
 ((EOD_failGettingThermalSensorData //EOD fails getting data from thermal sensor
 CDC_failReceiving_EOD_ossData) //CDC doesn’t receive EOD data because of the thermal sensor
 | <0.99> (EOD_receiveThermalSensorData // EOD receives data from thermal sensor
 CDC_receive_EOD_ossData))))))); // CDC receives oss data from EOD (daylight, thermal)

// the activity of Gun Mount EX 45 Mod 4 [GM] – The 5” gun mount
ROOT GM_activity: {(* <0–1/0.505012677156320916736,0.494987322843679083264>
GM_answer_GMCP_openFireCommand *)}; // waits for GMCP to send an open fire command and it opens fire
GM_answer_GMCP_openFireCommand: (// waits for GMCP to send an open fire command and it opens fire
GMCP_send_GM_openFireCommand // waits for GMCP to send an open fire command
 (GM_openFireFailed // GM fails to open fire
 | <0.95> (GM_launchMissile // GM launches a missile
 GM_waitForMissileToHit // GM waits for the missile to hit the enemy target
 (targetHit // target is hit
 | <0.3> targetMissed))));// target is missed

R2D_displayNewTarget: <Max_Watts=90, Network_Bandwidth_Req_MB=1.5, Total_Processing_Time_Sec=1.5,
Req_Num_Man_Approv_For_Cmd=1> ;

CD_request_GCC_setTarget: <Max_Watts=120, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=1> ;

165

CD_wait_GCC_setTarget: <Max_Watts=10, Network_Bandwidth_Req_MB=0.1, Req_Num_Man_Approv_For_Cmd=1>;

GCC_request_R3D_setTarget: <Max_Watts=100, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=1> ;
GCC_wait_R3D_setTarget: <Max_Watts=8, Network_Bandwidth_Req_MB=0.1, Req_Num_Man_Approv_For_Cmd=1>;

R3D_targetSet: <Max_Watts=120, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=2.0,
Req_Num_Man_Approv_For_Cmd=1> ;

GCC_targetSet: <Max_Watts=120, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=2.0,
Req_Num_Man_Approv_For_Cmd=1> ;

CD_followTarget: <Max_Watts=160, Network_Bandwidth_Req_MB=4.0, Total_Processing_Time_Sec=0.5,
Req_Num_Man_Approv_For_Cmd=1> ;

CD_request_GCC_openFire: <Max_Watts=60, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=0.5,
Req_Num_Man_Approv_For_Cmd=2>;
CD_wait_GCC_openFire: <Max_Watts=5, Network_Bandwidth_Req_MB=0.2, Req_Num_Man_Approv_For_Cmd=2>;

GCC_request_GMP_openFire: <Max_Watts=60, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=0.5,
Req_Num_Man_Approv_For_Cmd=2>;
GCC_wait_GMP_openFire: <Max_Watts=5, Network_Bandwidth_Req_MB=0.3, Req_Num_Man_Approv_For_Cmd=2>;

GMCP_displayOpenFireRequest: <Max_Watts=140, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=0>;

GMCP_request_GMP_ossData: <Max_Watts=100, Network_Bandwidth_Req_MB=2.5, Total_Processing_Time_Sec=2.0,
Req_Num_Man_Approv_For_Cmd=1>;

GMP_request_CDC_ossData: <Max_Watts=100, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=1.5,
Req_Num_Man_Approv_For_Cmd=1>;
GMP_wait_CDC_ossData: <Max_Watts=50, Network_Bandwidth_Req_MB=0.5, Req_Num_Man_Approv_For_Cmd=1>;

166

CDC_request_EOD_ossData: <Max_Watts=110, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=1.5,
Req_Num_Man_Approv_For_Cmd=1>;
CDC_wait_EOD_ossData: <Max_Watts=100, Network_Bandwidth_Req_MB=1, Req_Num_Man_Approv_For_Cmd=1>;

EOD_requestDaylightSensorData: <Max_Watts=80, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=1>;

EOD_receiveDaylightSensorData: <Max_Watts=120, Network_Bandwidth_Req_MB=3.0, Total_Processing_Time_Sec=2.5,
Req_Num_Man_Approv_For_Cmd=1>;

EOD_requestThermalSensorData: <Max_Watts=80, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=1>;

EOD_receiveThermalSensorData: <Max_Watts=120, Network_Bandwidth_Req_MB=3.0, Total_Processing_Time_Sec=2.5,
Req_Num_Man_Approv_For_Cmd=1>;

CDC_receive_EOD_ossData: <Max_Watts=150, Network_Bandwidth_Req_MB=3.5, Total_Processing_Time_Sec=3.0,
Req_Num_Man_Approv_For_Cmd=1>;

GMP_receive_CDC_ossData: <Max_Watts=120, Network_Bandwidth_Req_MB=2.5, Total_Processing_Time_Sec=2.0,
Req_Num_Man_Approv_For_Cmd=1>;

GMCP_receive_GMP_ossData: <Max_Watts=120, Network_Bandwidth_Req_MB=2.5, Total_Processing_Time_Sec=1.5,
Req_Num_Man_Approv_For_Cmd=1>;
GMCP_wait_GMP_ossData: <Max_Watts=10, Network_Bandwidth_Req_MB=0.5, Req_Num_Man_Approv_For_Cmd=1>;

GMCP_send_GM_openFireCommand: <Max_Watts=100, Network_Bandwidth_Req_MB=1.0, Total_Processing_Time_Sec=1.0,
Req_Num_Man_Approv_For_Cmd=2> ;
GMCP_wait_GM_openFireCommand: <Max_Watts=10, Network_Bandwidth_Req_MB=0.5, Req_Num_Man_Approv_For_Cmd=2>;

GM_launchMissile: <Max_Watts=250, Network_Bandwidth_Req_MB=2.0, Total_Processing_Time_Sec=2.5,
Req_Num_Man_Approv_For_Cmd=2> ;

167

GM_waitForMissileToHit: <Max_Watts=50, Network_Bandwidth_Req_MB=0.5, Total_Processing_Time_Sec=0.5,
Req_Num_Man_Approv_For_Cmd=0> ;

R2D_activity, CD_activity SHARE ALL R2D_displayNewTarget;
GCC_activity, CD_activity SHARE ALL CD_request_GCC_setTarget, GCC_targetNotSet, GCC_targetSet;
R3D_activity, GCC_activity SHARE ALL GCC_request_R3D_setTarget, R3D_targetNotSet, R3D_targetSet;
GCC2_activity, CD_activity SHARE ALL CD_request_GCC_openFire, GCC_openFireFailed, targetMissed, targetHit;
GMP_activity, GCC_activity SHARE ALL GCC_request_GMP_openFire, GMP_openFireFailed, targetMissed, targetHit;
GMCP_activity, GMP_activity SHARE ALL GMCP_displayOpenFireRequest, GMCP_openFireFailed, targetMissed, targetHit;
GMP2_activity, GMCP_activity SHARE ALL GMCP_request_GMP_ossData, GMCP_failReceiving_GMP_ossData,
GMCP_receive_GMP_ossData;
CDC_activity, GMP_activity SHARE ALL GMP_request_CDC_ossData, GMP_failReceiving_CDC_ossData,
GMP_receive_CDC_ossData;
EOD_activity, CDC_activity SHARE ALL CDC_request_EOD_ossData, CDC_failReceiving_EOD_ossData,
CDC_receive_EOD_ossData;
GM_activity, GMCP_activity SHARE ALL GMCP_send_GM_openFireCommand, targetHit, targetMissed;

168

THIS PAGE INTENTIONALLY LEFT BLANK

169

APPENDIX B – GUN WEAPON SYSTEM MK 34 MOD 1 ASSERTION LIBRARY

Assertion Description Assertion
Find a scenario where the
system’s max watts
requirement exceeds the
gun weapon system’s
watts capacity.

ASSERTION GWSMaxWatts: SliceSum(Max_Watts, >=, 220)

Find a possible hazard
state scenario where the
Gun Console Computer
(GCC) Open Fire
command fails.

ASSERTION GCC_OpenFireFail: EventCount(GCC_openFireFailed, >=, 1);

Find a scenario where
parallel events may
require a total network
bandwidth throughput that
is greater than the gun
weapon system network
capacity.

ASSERTION Network_Capacity_Check: SliceSum(Network_Bandwidth_Req_MB, >=, 5);

Show any sequence of
events that may cause the
GCC_OpenFire command
to require more than three
manual approvals.

ASSERTION Max_Manual_Approvals: {(EventCount(GCC_openFire, >=,
1))(ChainSum(Req_Num_Man_Approv_For_Cmd, >=, 3))};

Find a scenario where the
total amount of time to
execute a GCC_openFire
command is greater than

ASSERTION GCC_Timeout: {(EventCount(GCC_openFire, >=,
1))(ChainSum(Total_Processing_Time_Sec, >=, 5))};

170

five seconds.

ASSERTION Construct:
ASSERTION AssertionName: EventCount (EventName, Operator, Value));
ASSERTION AssertionName: SliceSum (AttributeName, Operator, Value);
ASSERTION AssertionName: ChainSum (AttributeName, Operator, Value);
ASSERTION AssertionName: Probability (Operator, Value);
ASSERTION Assertion_Name: {(ASSERTION_1) (ASSERTION_2) (ASSERTION_n)};

171

APPENDIX C – DEFINITION OF TERMS

The following are the definitions of specific terms used in this document:

Computer Software (or software) – A combination of associated computer
instructions and computer data definitions required to enable the computer
hardware to perform computational or control functions.

Explosive System – An explosive system is a type of ordnance installed on Navy
ships or aircraft which do not have non–weapon functions. It includes all the
hardware and software required for its operation and support through its life
cycle. A countermeasure system, an ejection seat, and a cable cutter are
examples of explosive systems.

Explosives – The term “explosive” or “explosives” includes any chemical,
compound, or mechanical mixture which, when subjected to heat, impact, friction,
detonation, or other suitable initiation, undergoes a very rapid chemical change
with the evolution of large volumes of highly heated gases, which exert pressures
in the surrounding medium. The term applies to high explosives, propellants,
and pyrotechnics that detonate, deflagrate, burn vigorously, or generate heat,
light, smoke, or sound.

Explosives Safety – Explosives safety is the process used to prevent premature,
unintentional, or unauthorized initiation of explosives and devices containing
explosives, and to minimize the effects of explosions, combustion, toxicity, and
any other deleterious characteristics. Explosives safety includes all mechanical,
chemical, biological, electrical, and environmental hazards associated with
explosives; hazards of electromagnetic radiation to ordnance; and combinations
therein. Equipment, systems, or procedures and processes whose malfunction
would hazard the safe manufacturing, handling, maintenance, storage, transfer,
release, testing, delivery, firing, or disposal of explosives are also included.

Firmware – The combination of a hardware device and computer instructions or
computer data that reside as read–only software on the hardware device. The
software cannot be readily modified under program control. For purposes of this
instruction, firmware and software are considered synonymous.

Non–Developmental Item (NDI) – NDI covers material available with little or no
government development effort required and includes items from domestic or
foreign commercial sources (off–the–shelf), items already developed by other
services, defense activities and government agencies, and items developed by
foreign governments. NDIs may be a system, subsystem, or component,
including software.

Ordnance – Military material such as combat weapons of all kinds, with
ammunition and equipment required for their use. Ordnance includes all the

172

things that make up a ship’s or aircraft’s armament including guns, ammunition,
and all equipment and ordnance–related software needed to control, operate,
and support the weapons.

Principal for Safety – The Principal for Safety is the Program Office’s point of
contact for safety–related matters. The Principal for Safety shall have the
authority to speak for the Program Office on safety–related matters and shall be
the primary liaison with the WSESRB.

Program Managers – Program Managers are those acquisition/life cycle
managers assigned the responsibility and delegated the authority for the
acquisition and life cycle management of a particular system. In this instruction,
the term “Program Manager (PM)” includes DoN acquisition managers and all
others covered by the Navy Explosives Safety Program of reference (a). PM is
used in this instruction for program, product, or project manager; Direct Reporting
Program Manager (DRPM); or Program Executive Officer (PEO), as well as for
other weapons acquisition officials.

Weapon System – A weapon system is a type of ordnance intended for use in
defeating enemy targets. A weapon system includes hardware and software
subsystems and components required for its operation and support throughout its
life cycle, including that necessary for the selection, arming, release or firing, and
jettison of an ordnance item. The weapon system, as defined herein, includes its
interface with the delivery platform. For the purpose of this instruction, an
“approved weapon system” is one whose configuration has previously been
before the WSESRB and all safety recommendations/issues made by the board
have either been incorporated in the system or resolved.

Weapon System Safety – Weapon system safety is the aggregate of analytical
and testing processes, procedures, training, and management policy used to
ensure that the risks associated with weapons and related systems are reduced
to the lowest extent practical throughout the system’s life cycle.

Weapon System Explosives Safety Review Board – The WSESRB is designated
by the Chief of Naval Operations (CNO) as the DON’s authority for the review
and independent assessment of the safety aspects of weapon systems,
explosive systems, and related systems, and is empowered to make safety
recommendations to the responsible Navy Command, PM, and Milestone
Decision Authority (MDA). With regard to the conduct of test firings aboard Navy
ships, the WSESRB is the safety approval authority.

173

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library

Naval Postgraduate School
Monterey, CA

3. Mikhail Auguston

Department of Computer Science
Naval Postgraduate School
Monterey, CA

4. Thomas Huynh

Department of Systems Engineering
Naval Postgraduate School
Monterey, CA

5. Robert Harney
Department of Systems Engineering
Naval Postgraduate School
Monterey, CA

6. Ronald Finkbine
Department of Computer Science
Indiana University Southeast
New Albany, IN

7. Peter Musial
Department of Computer Science
University of Puerto Rico at San Piedras
San Juan, Puerto Rico

8. Clifford Whitcomb

Department of Systems Engineering
Naval Postgraduate School
Monterey, CA

9. MAJ Joey Rivera
Department of the Army
Naval Postgraduate School
Monterey, CA

	I. INTRODUCTION
	A. PROBLEM OVERVIEW
	B. INTRODUCTION TO THE PROBLEM
	1. Problem Statement
	1. SSSTRP Mission
	2. Research Approach
	a. Project Planning
	b. System Safety Program

	C. RESEARCH FINDINGS: SSSTRP REPORT ANALYSIS
	D. LIMITATIONS OF STUDY
	1. Vendor Self-Assessment
	2. Research Results Summary

	II. REVIEW OF PREVIOUS WORK
	A. INTRODUCTION
	B. SOFTWARE SAFETY RISKS WHEN EVALUATING A COTS SOLUTION
	C. GUN WEAPON SYSTEM SOFTWARE SAFETY RISK: SOFTWARE OBSOLESCENCE
	D. VENDOR SELECTION SOFTWARE SAFETY RISKS
	E. REQUIREMENTS AND COTS CAPABILITY MISMATCHES: A SOFTWARE SAFETY RISK
	F. SOFTWARE ACQUISITION EVALUATION: PERFORMANCE AND RELIABILITY
	G. SOFTWARE ARCHITECTURE MODELS AND CONSTRAINTS
	H. SOFTWARE ARCHITECTURE FLEXIBILITY: AN ACQUISITION RISK
	I. DEPT OF THE NAVY OPEN ARCHITECTURE ENTERPRISE (OA ENTERPRISE) PROGRAM
	J. SOFTWARE ACQUISITION CHALLENGES OF A NAVAL GUN WEAPON SYSTEM
	K. SOFTWARE SAFETY REQUIREMENTS FRAMEWORKS
	L. NASA SOFTWARE SAFETY STANDARD (NASA-STD-8719.13)
	M. IEC 61508-3
	N. SUMMARY

	III. SYSTEM ARCHITECTURE MODELING METHODOLOGY FOR NAVAL GUN WEAPON SYSTEM SOFTWARE
	A. INTRODUCTION
	B. DESCRIPTION OF A NAVAL GUN WEAPON SYSTEM
	C. IDENTIFICATION OF PROBLEMS FOUND IN THE PRE-ACQUISITION SOFTWARE SAFETY EVALUATION PROCESS
	1. Domain-Specific Issues Covered in This Research
	2. Domain-specific Issues Not Covered in This Research

	D. OVERVIEW OF THE MONTEREY PHOENIX METHODOLOGY
	1. MP Scenario (Event Trace)
	2. Unordered Events: R: {A B C}
	3. Ordered Events: R: (A B C)
	4. Multiple Unordered Events: R: {* A *}
	5. Multiple Ordered Events: R: (* A *)
	6. Optional Events: R: [A]
	7. Alternative Events: R: (A | B | C)
	8. Introduction of SHARE ALL Construct and Constraints
	9. MP Attributes
	10. MP Expansion Scope Construct
	11. Example MP Model
	12. Small Scope Hypothesis
	13. Use Case Representation in MP
	14. Use Case MP Model
	15. Evaluation of MP

	E. PROTOTYPE NAVAL GUN WEAPON SYSTEM MODEL
	1. The Purpose of the Naval Gun Weapon System Model
	2. Introduction to the Model
	3. Gun Weapon System Model Properties
	a. Explanation of Event Attributes

	4. Testing Architectural Design Via Formal Queries
	a. Testing Architectural Design Via Formal Queries
	b. Macro Commands

	F. IDENTIFYING POTENTIAL SOFTWARE SAFETY HAZARD STATES
	1. Modeling Demonstration: QUERY GWSMaxWatts
	2. Modeling Demonstration: QUERY Network_Capacity_Check
	3. Model Demonstration: QUERY GCC_OpenFireFail
	4. Model Demonstration: QUERY Max_Manual_Approvals
	5. Model Demonstration: QUERY GCC_ OpenFireFailed

	G. USING PROBABILITIES TO REFINE SYSTEM BEHAVIOR IN MP
	H. DEMONSTRATION SUMMARY
	I. PROTOTYPE SSSTRP EVALUATION METHODOLOGY
	J. SUMMARY
	K. LIMITATIONS OF THE PROTOTYPE SSSTRP PROCESS

	IV. EAGLE6–PROTOTYPE SOFTWARE ARCHITECTURE MODELING SOFTWARE
	A. EAGLE6 PROTOTYPE SOFTWARE ARCHITECTURE:
	B. EAGLE6 PROTOTYPE SOFTWARE DIAGRAM
	C. MP MODEL OF INTERACTION BETWEEN EAGLE6 AND USER
	D. PROTOTYPE COMPILER ARCHITECTURE
	1. Eagle6 Compiler Design
	2. Eagle6 Lexer and Parser

	E. EAGLE6 PROTOTYPE PARSER AND HELPER
	F. EAGLE6 PROTOTYPE VIEWER FOR GRAPHICAL AND TEXTUAL DISPLAY OF SCENARIO
	1. Eagle6 Prototype Viewer General Options
	2. Eagle6 Prototype Viewer Scenario Generation Filter

	G. LIMITATION OF EAGLE6 TOOL

	V. RESEARCH CONCLUSION AND CONTRIBUTIONS
	A. FUTURE RESEARCH OPPORTUNITIES

	LIST OF REFERENCES
	APPENDIX B – GUN WEAPON SYSTEM MK 34 MOD 1 ASSERTION LIBRARY
	INITIAL DISTRIBUTION LIST

